用户名: 密码: 验证码:
电压特性对压电纤维复合物驱动性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of voltage characteristic to driving property of piezoelectric fiber composites
  • 作者:袁晰 ; 王晓宇 ; 王浩威 ; 陈海燕 ; 林秀娟 ; 闫明洋 ; 张少峰 ; 周科朝 ; 张斗
  • 英文作者:YUAN Xi;WANG Xiao-yu;WANG Hao-wei;CHEN Hai-yan;LIN Xiu-juan;YAN Ming-yang;ZHANG Shao-feng;ZHOU Ke-chao;ZHANG Dou;State Key Laboratory of Powder Metallurgy, Central South University;Beijing Spacecraft System Engineering;
  • 关键词:压电纤维复合物 ; 电压特性 ; 电压波形 ; 驱动性能
  • 英文关键词:piezoelectric fiber composites;;voltage characteristic;;waveform;;driving performance
  • 中文刊名:ZYXZ
  • 英文刊名:The Chinese Journal of Nonferrous Metals
  • 机构:中南大学粉末冶金国家重点实验室;北京空间飞行器总体设计部;
  • 出版日期:2019-02-15
  • 出版单位:中国有色金属学报
  • 年:2019
  • 期:v.29;No.239
  • 基金:国家自然科学基金资助项目(51672311);; 湖南省科技计划资助项目(2016WK2022)~~
  • 语种:中文;
  • 页:ZYXZ201902016
  • 页数:7
  • CN:02
  • ISSN:43-1238/TG
  • 分类号:127-133
摘要
压电纤维复合物因机电响应速度快、驱动能力强和柔性佳成为智能材料领域的研究热点之一。压电纤维复合物作为驱动器时,在不同的应用领域对于驱动电压特性有不同的要求。本文通过自由应变和悬臂梁顶端位移研究压电纤维复合物在不同电压幅值、偏置、波形下的驱动应变性能。结果表明:随着驱动电压幅值增大,压电纤维复合物自由应变值和驱动性能随之增大。压电纤维复合物的横向和纵向自由应变分别随着电压偏置的增大而降低,相应的悬臂梁顶端位移量减小。当用方波驱动时压电纤维复合物的纵向自由应变值和横向自由应变值分别为2061.4×10~(-6)和574.9×10~(-6),顶端位移量为1.614mm,比正弦波和锯齿波的驱动值更大,其原因主要是电压的阶跃性导致瞬间施加在压电纤维上的电场强度较大。
        As one of the smart materials, the piezoelectric fiber composites(PFCs) have shown superior performance in aspects of flexibility, high electromechanical response rate and long service life. The requirements of the driving voltage properties were different when the PFCs were used in various areas. In this paper, the strain of PFCs and the tip displacement of the cantilever beam were studied under different driving conditions, including the amplitude, bias and waveform of voltage. The results show that the actuating properties of PFCs, such as strain and the tip displacement of cantilever beam increase when the amplitude of driving voltage amplifies. Both the transverse and longitudinal strain of the PFCs decrease when the bias of voltage amplifies. After being driven by square-wave alternating voltage, the transverse and longitudinal strain of PFCs are 2061.4×10~(-6) and 574.9×10~(-6), respectively, which are larger than those driven by sine-wave and sawtooth-wave voltage. It is mainly due to the step characteristic of voltage.
引文
[1]沈星,冯伟,李仁.具有大驱动位移的复合结构型PZT压电陶瓷[J].复合材料学报,2005,22(6):44-48.SHEN Xing,FENG Wei,LI Ren.Large-displacement PZTpiezoelectrics with composite structure[J].Acta Materiae Compositae Sinica,2005,22(6):44-48.
    [2]BENT A A.Active fiber composites for structural actuation[D].Massachusetts:Massachusetts Institute of Technology,1997.
    [3]LIN Xiou-juan,ZHOU Ke-chao,ZHANG Xiao-yong,ZHANGDou.Development,modeling and application of piezoelectric fiber composites[J].Transactions of Nonferrous Metals Society of China,2013,23(1):98-107.
    [4]DEBIASI M T.Deformation of the upper and lower surfaces of an airfoil by macro fiber composite actuators[J].Journal of Solid State Chemistry,2013,161(2):416-423.
    [5]KIM H S,SOHN J W,CHOI S B.Vibration control of a cylindrical shell structure using macro fiber composite actuators[J].Mechanics Based Design of Structures and Machines,2011,39(4):491-506.
    [6]RAJA S,IKEDA T,DWARAKANATHAN D.Deflection and vibration control of laminated plates using extension and shear actuated fiber composites[J].Smart Materials Research,2011,2011(2/3):686-691.
    [7]SOJH J W,CHOI S B,KIM H S.Vibration control of smart hull structure with optimally placed piezoelectric composite actuators[J].International Journal of Mechanical Sciences,2011,53(8):647-659.
    [8]TARAZAGA P A,INMAN D J,WILKIE W K.Control of a space rigidizable inflatable boom using macro-fiber composite actuators[J].Journal of Vibration and Control,2007,13(7):935-950.
    [9]SODANO H A,INMAN D J,PARK G.Comparison of piezoelectric energy harvesting devices for recharging batteries[J].Journal of Intelligent Materials Systems and Structures,2005,16(10):799-807.
    [10]SODANO H A,LLOYD J,INMAN D J.An experimental comparison between several active composite actuators for power generation[J].Smart Materials and Structures,2006,15(5):1211-1216.
    [11]YANG Y W,TANG L H,LI H Y.Vibration energy harvesting using macro-fiber composites[J].Smart Materials and Structures,2009,18(11):1-8.
    [12]SONG H J,CHOI Y T,WERELEY N M,PUREKAR A S.Energy harvesting devices using macro-fiber composite materials[J].Journal of Intelligent Materials Systems and Structures,2010,21(6):647-658.
    [13]TUNGPIMOLRUT K,HATTI N,PHONTIP J,KOMOLJINDAKUL K,PECHRACH K,MANOOONPONG P.Design of energy harvester circuit for a MFC piezoelectric based on electrical circuit modeling[C]//IEEE International Symposium on Applications of Ferroelectrics.Piscataway:IEEE,2011:1-4.
    [14]PARK S,INMAN D J,YUN C B.An outlier analysis of MFC-based impedance sensing data for wireless structural health monitoring of railroad tracks[J].Engineering Structures,2008,30(10):2792-2799.
    [15]CUI Lin,LIU Yu,SOH C K.Health monitoring of cylindrical structures using torsional wave generated by piezoelectric macro-fiber composite[C]//Proceedings of SPIE,Health Monitoring of Structural and Biological Systems 2011.2011,7984:79840G-1-9.https://doi.org/10.1117/12.880333.
    [16]TARAZAGA P A,PEAIRS D M,WILKIE W K,INMAN D J.Structural health monitoring of an inflatable boom subjected to simulated micrometeoroid/orbital debris damage[C]//Proceedings of SPIE,Nondestructive Evaluation and Health Monitoring of Aerospace Materials,Composites,and Civil Infrastructure.2006,6176:61760N-1-9.https://doi.org/10.1117/12.658717.
    [17]JHA A K,KUDVA J N.Morphing aircraft concepts,classifications,and challenges[C]//Proceedings of SPIE,Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies.2004,5388:213-224.https://doi.org/10.1117/12.544212.
    [18]KIM D K,HAN J H.Smart flapping wing using macro-fiber composite actuators[C]//Proceedings of SPIE,Smart Structures and Materials 2006:Smart Structures and Integrated Systems.2006,6173:61730F-1-9.https://doi.org/10.1117/12.658117.
    [19]PARADIES R,CIRESA P.Active wing design with integrated flight control using piezoelectric macro fiber composites[J].Smart Materials and Structures,2009,18(3):1-9.
    [20]王晓宇,从强,林秀娟,陈海燕,王浩威,周科朝,张斗.压电纤维复合物驱动应变性能的模拟和优化[J].中国有色金属学报,2015,25(11):3113-3118.WANG Xiao-yu,CONG Qiang,LIN Xiu-juan,CHEN Hai-yan,WANG Hao-wei,ZHOU Ke-chao,ZHANG Dou.Modeling and optimization of actuation strain property of piezoelectric fiber composites[J].The Chinese Journal of Nonferrous Metals,2015,25(11):3113-3118.
    [21]张智雄,郑学军,张勇,梅靖羚,费明祥,祝元坤.并联结构d15模式PZT-51悬臂梁的俘能性能[J].中国有色金属学报,2015,25(8):2183-2189.ZHANG Zhi-xiong,ZHEN Xue-jun,ZHANG Yong,MEIJing-lin,FEI Ming-xiang,ZHU Yuan-kun.Features of d15 mode PZT-51 ceramic cantilever piezoelectric energy harvester with parallel connection[J].The Chinese Journal of Nonferrous Metals,2015,25(8):2183-2189.
    [22]朱松,陈子琪,林秀娟,周科朝,张斗.悬臂梁基板对压电纤维复合物驱动性能的影响[J].中国有色金属学报,2015,25(7):1904-1910.ZHU Song,CHEN Zi-qi,LIN Xiu-juan,ZHOU Ke-chao,ZHANG Dou.Effect of cantilever substrate on the driving performance of piezoelectric fiber composites[J].The Chinese Journal of Nonferrous Metals,2015,25(7):1904-1910.
    [23]陈西平,付庄,曹其新,赵言正,杨志刚,程光明.压电型惯性冲击机构的驱动波形分析[J].压电与声光,2005,27(3):316-319.CHEN Xi-ping,FU Zhuang,CAO Qi-xin,ZHAO Yan-zheng,YANG Zhi-gang,CHENG Guang-ming.Driving waveform analysis of piezoelectric inertial impact mechanism[J].Piezoelectrics and Acoustooptics,2005,27(3):316-319.
    [24]LIN X J,ZHOU K C,BUTTON T W,ZHANG D.Fabrication,characterization,and modeling of piezoelectric fiber composites[J].Journal of Applied Physics,2013,114(2):027015-1-5.
    [25]崔玉国,孙宝元,董维杰,杨志欣.压电陶瓷执行器迟滞与非线性成因分析[J].光学精密工程,2003,11(3):270-275.CUI Yu-guo,SUN Bao-yuan,DONG Wei-jie,YANG Zhi-xin.Analysis of delay and nonlinearity of piezoelectric actuator[J].Optics and Precision Engineering,2003,11(3):270-275.
    [26]MASYS A J,REN W,YANG G,MUKHERJEE B K.Piezoelectric strain in lead zirconate titanate ceramics as a function of electric field,frequency,and dc bias[J].Journal of Applied Physics,2003,94(94):1155-1162.
    [27]BENT A A,HAGOOD N W.Piezoelectric fiber composites with interdigitated electrodes[J].Journal of Intelligent Material Systems and Structures,1997,8(11):903-919.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700