用户名: 密码: 验证码:
激光系统中半导体激光器温度稳定系统研究与设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research and design of semiconductor laser temperature stabilization system in laser system
  • 作者:刘熙明 ; 魏旭 ; 窦立刚
  • 英文作者:Liu Ximing;Wei Xu;Dou Ligang;Guizhou Aerospace Tianma Mechanical and Electrical Technology Co,Ltd,10th Academy of China Aerospace Science and Technology Group;
  • 关键词:半导体激光 ; 大功率激光 ; 温度稳定控制 ; 改进粒子群算法 ; PID控制器
  • 英文关键词:semiconductor laser;;high power laser;;temperature stability control;;improved particle swarm optimization;;PID controller
  • 中文刊名:QJGY
  • 英文刊名:High Power Laser and Particle Beams
  • 机构:中国航天科工集团第十研究院贵州航天天马机电科技有限公司;
  • 出版日期:2019-03-13 15:27
  • 出版单位:强激光与粒子束
  • 年:2019
  • 期:v.31;No.260
  • 基金:国家自然科学基金项目(61462015)
  • 语种:中文;
  • 页:QJGY201902005
  • 页数:8
  • CN:02
  • ISSN:51-1311/O4
  • 分类号:21-28
摘要
激光器系统中半导体激光器的功率输出稳定度和工作温度有很大的关系,为了使大功率半导体激光器输出功率稳定,需要对激光器实现高精度、快速温度控制。针对现有的激光系统中激光器温度控制系统存在控制精度不够高、控制速度慢等问题,设计了一种温度稳定系统,采用PT-100热电偶测量激光器温度,并使用最小二乘法对温度数据进行拟合,使得温度测量精度达到0.01℃;使用改进粒子群算法优化(PSO)的PID控制器实现温度控制。仿真实验和实际测试表明,所设计的温度稳定系统能够很好地控制激光器温度,达到目标温度所需的调节时间小于11s,达到稳态后温度波动在±0.02℃内。与传统的温度控制方式相比,所设计的系统能够实现参数自整定并自动调节温度,对大功率激光系统中激光器温度具有良好稳定效果。
        The power output stability of semiconductor laser in the laser system is closely related to the working temperature.As the control precision is not high and control speed of temperature control system is slow in the laser system,this paper discusses a new temperature stabilization system.This system gets laser temperature by PT-100 temperature sensor,and uses the least squares fitting to process the temperature data,thus to ensure the temperature measurement accuracy of 0.01 ℃.And the system adjusts the temperature by PID controller whose parameter is optimized by particle swarm optimization algorithm.Simulation experiments and actual test show that of the temperature system can quickly stabilize the temperature of laser,the time of adjustment is less than 11 s.And the fluctuations of temperature is about±0.02 ℃ after the system reaching the steady state.Compared with the traditional temperature control method,the system can achieve self-tuning of parameters and automatically adjust the temperature,the laser temperature in the high-power laser system has a good stability.
引文
[1]屈鹏飞,王石语,邵新征,等.Nd:YAG/Nd:YVO4组合晶体激光器温度稳定性研究[J].光学学报,2017,37:0614001.(Qu Pengfei,Wang Shiyu,Shao Xinzheng,et al.Temperature stability of Nd:YAG/Nd:YVO4combination crystals laser.Acta Optica Sinica,2017,37:0614001)
    [2]何启欣,刘慧芳,李彬,等.多通道半导体激光器温控系统[J].光学学报,2017,37:1114002.(He Qixin,Liu Huifang,Li Bin,et al.Multi-channel semiconductor laser temperature control system.Acta Optica Sinica,2017,37:1114002)
    [3]欧群飞,钟鸣,叶大华,等.大能量钕玻璃棒状激光器新型热管理技术[J].强激光与粒子束,2007,19(1):35-39.(Eu Qunfei,Zhong Ming,Ye Dahua,et al.Novel heat management technology for high energy Nd:glass rod laser.High Power Laser and Particle Beams,2007,19(1):35-39)
    [4]朱成林,韩晓泉,冯泽斌,等.基于Smith预估补偿的准分子激光器温度控制系统研究[J].量子电子学报,2018,35(5):533-538.(Zhu Chenglin,Han Xiaoquan,Feng Zebin,et al.Temperature control system of excimer laser based on Smith prediction compensation.Chinese Journal of Quantum Electronics,2018,35(5):533-538)
    [5]Andresen M,Ma K,Buticchi G,et al.Junction temperature control for more reliable power electronics[J].IEEE Trans Power Electronics,2017,33(1):765-776.
    [6]Costa B A,Lemos J M,Guillot E.Solar furnace temperature control with active cooling[J].Solar Energy,2018,159:66-77.
    [7]Zhai Z,Shen H,Chen J.Fast growth of conductive amorphous carbon films by HFCVD with filament temperature control[J].Materials Letters,2018,228:293-296.
    [8]吴俊,李长俊.基于TEC的高精度温控系统设计[J].电子设计工程,2017,25(20):75-80.(Wu Jun,Li Changjun.Design of high precision temperature control system based on TEC.Electronic Design Engineering,2017,25(20):75-80)
    [9]卢燕,张艳荣,胡小林.基于模糊PID控制的半导体激光器温度控制系统设计[J].机械与电子,2018,36(6):52-55.(Lu Yan,Zhang Yanrong,Hu Xiaolin.Design of semiconductor laser temperature control system based on fuzzy PID.Machinery&Electronics,2018,36(6):52-55)
    [10]郑奇,朱瑜,孙军.利用LD温漂增强LIBS激光器温度适应性研究[J].激光与红外,2016(12):1473-1476.(Zheng Qi,Zhu Yu,Sun Jun.Research on laser temperature adaptability in LIBS enhanced by LD temperature drift.Laser&Infrared,2016(12):1473-1476)
    [11]张克非,蒋涛,邵龙,等.基于新型模糊PID控制单元的LD精密温控研究[J].光学精密工程,2017,25(3):648-655.(Zhang Kefei,Jiang Tao,Shao Long,et al.Research on precision temperature control of laser diode based on the novel fuzzy PID control unit.Optical and Precision Engineering,2017,25(3):648-655)
    [12]张艳锋,严家明.基于最小二乘法的压力传感器温度补偿算法[J].计算机测量与控制,2007,15(12):1870-1871.(Zhang Yanfeng,Yan Jiaming.Compensation method of pressure sensor based on minimum two multiplication principle.Computer Measurement&Control,2007,15(12):1870-1871)
    [13]张华强,李玉峰.基于最小二乘法的热量表温度采集模块设计[J].仪表技术与传感器,2011(2):16-18.(Zhang Huaqiang,Li Yufeng.Design of heat meter temperature acquisition module based on least square method.Instrument Technology and Sensors,2011(2):16-18)
    [14]Majumdar S J,Bishop C H,Etherton B J,et al.Can an ensemble transform Kalman filter predict the reduction in forecast-error variance produced by targeted observations[J].Quarterly Journal of the Royal Meteorological Society,2010,127(578):2803-2820.
    [15]Ma J M J,Teng J F.Predict chaotic time-series using unscented Kalman filter[C]//IEEE International Conference on Machine Learning&Cybernetics.2005.
    [16]Lynch C,Omahony M J,Scully T.Simplified method to derive the Kalman filter covariance matrices to predict wind speeds from a NWPmodel[J].Energy Procedia,2014,62:676-685.
    [17]孙田川,刘洁瑜.一种新的MEMS陀螺温度误差建模与补偿方法[J].压电与声光,2017,39(1):136-139.(Sun Tianchuan,Liu Jieyu.Anovel temperature-relate error modeling and temperature compensation method of MEMS gyroscope.Piezoelelectrics&Acoustooptics,2017,39(1):136-139)
    [18]刘熙明,王义,聂思敏.基于分布式无线网络的水质监控系统设计[J].渔业现代化,2017,44(4):50-56.(Liu Ximing,Wang Yi,Nie Simin.Design of water quality monitoring system based on distributed wireless network.Fishery Modernization,2017,44(4):50-56)
    [19]Wang Xiuli,Wang Yongji,Zhou Hui,et al.PSO-PID:A novel controller for AQM routers[C]//IEEE International Conference on Wireless and Optical Communications Networks.2006:126-131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700