用户名: 密码: 验证码:
激光工艺参数对激光熔化沉积纯钛样品残余应力的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Laser Process Parameters on Residual Stress of Pure Titanium Samples Prepared by Laser Melting Deposition
  • 作者:孙洪吉 ; 韦靖 ; 郑兆宏 ; 张德闯 ; 林建国
  • 英文作者:Sun Hongji;Wei Jing;Zheng Zhaohong;Zhang Dechuang;Lin Jianguo;School of Materials Science and Engineering, Xiangtan University;Provincial Key Laboratory for Material Design and Fabrication, Xiangtan University;
  • 关键词:激光技术 ; 激光增材制造 ; 小孔法 ; 残余应力 ; 温度梯度
  • 英文关键词:laser technique;;laser additive manufacturing;;hole-drilling method;;residual stress;;temperature gradient
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:湘潭大学材料科学与工程学院;湘潭大学湖南省材料设计与制备技术重点实验室;
  • 出版日期:2018-12-27 10:31
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.507
  • 基金:湖南省重点研发计划项目(2016JC2005)
  • 语种:中文;
  • 页:JJZZ201903016
  • 页数:7
  • CN:03
  • ISSN:31-1339/TN
  • 分类号:131-137
摘要
采用同轴送粉激光熔化沉积技术制备了纯钛构件,并利用小孔法对样件扫描面不同部位的残余应力进行了测试,研究了激光功率、扫描速度及送粉率对样件扫描面上残余应力分布的影响。研究结果表明:沉积件与基材结合区为残余压应力区,其他区域为拉应力区,且底部与基材结合区域的残余应力最大,顶部残余应力最小;沉积件底部与基材结合区域的残余应力受激光工艺参数的影响较大,而顶部区域受激光工艺参数的影响较小。通过合理地选取激光工艺参数可有效降低沉积件的残余应力。
        The pure Ti components are prepared by the laser melting deposition technique with coaxial powder feeding, and the residual stresses in the different regions on the scanning surfaces of samples are measured by the hole-drilling strain method. The effects of laser power, scanning speed and powder feeding rate on the residual stress distributions on the scanning surfaces of samples are also investigated. The research results show that the highest compressive stress appears in the joint area between the deposited component and the substrate and the other areas exhibit the tensile stresses. Moreover, the lowest stress appears at the top area of samples. The residual stress in the joint area between the deposited component and the substrate is strongly dependent on the laser process parameters, while the latter has a slight effect on the residual stress distribution in the top area. The reasonable choice of laser process parameters can effectively reduce the residual stresses of deposited components.
引文
[1] Baumers M, Tuck C, Wildman R, et al. Shape complexity and process energy consumption in electron beam melting: a case of something for nothing in additive manufacturing?[J]. Journal of Industrial Ecology, 2017, 21(S1): S157-S167.
    [2] Hopkinson N, Hague R, Dickens P. Rapid manufacturing: an industrial revolution for the digital age [M]. Chichester: John Wiley & Sons, 2006: 228-229.
    [3] Yadroitsava I, Grewar S, Hattingh D, et al. Residual stress in SLM Ti6Al4V alloy specimens[J]. Materials Science Forum, 2015, 828/829: 305-310.
    [4] Casavola C, S L, Campanelli C. Pappalettere C. Experimental analysis of residual stresses in the selective laser melting process[C]. Proceedings of the XIth International Congress and Exposition, 2008: 18270126.
    [5] Parry L, Ashcroft I A, Wildman R D. Understanding the effect of laser scan strategy on residual stress in selective laser melting through thermo-mechanical simulation[J]. Additive Manufacturing, 2016, 12: 1-15.
    [6] Verhaeghe F, Craeghs T, Heulens J, et al. A pragmatic model for selective laser melting with evaporation[J]. Acta Materialia, 2009, 57(20): 6006-6012.
    [7] Khairallah S A, Anderson A. Mesoscopic simulation model of selective laser melting of stainless steel powder[J]. Journal of Materials Processing Technology, 2014, 214(11): 2627-2636.
    [8] Nickel A H, Barnett D M, Prinz F B. Thermal stresses and deposition patterns in layered manufacturing[J]. Materials Science and Engineering: A, 2001, 317(1/2): 59-64.
    [9] Kruth J P, Deckers J, Yasa E, et al. Assessing and comparing influencing factors of residual stresses in selective laser melting using a novel analysis method[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(6): 980-991.
    [10] Kruth J P, Badrossamay M, Yasa E, et al. Part and material properties in selective laser melting of metals[C]. International Symposium on Electromachining, 2010, 16: 3-14.
    [11] Zaeh M F, Branner G. Investigations on residual stresses and deformations in selective laser melting[J]. Production Engineering, 2010, 4(1): 35-45.
    [12] van Belle L, Vansteenkiste G, Boyer J C. Investigation of residual stresses induced during the selective laser melting process[J]. Key Engineering Materials, 2013: 1828-1834.
    [13] Roberts I A. Investigation of residual stresses in the laser melting of metal powders in additive layer manufacturing[D]. Wolverhampton: University of Wolverhampton, 2012: 246.
    [14] Lu Y J, Wu S Q, Gan Y L, et al. Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy[J]. Optics & Laser Technology, 2015, 75: 197-206.
    [15] Dunbar A J, Denlinger E R, Heigel J, et al. Development of experimental method for in situ distortion and temperature measurements during the laser powder bed fusion additive manufacturing process[J]. Additive Manufacturing, 2016, 12: 25-30.
    [16] Cheng B, Shrestha S, Chou K. Stress and deformation evaluations of scanning strategy effect in selective lasermelting[J]. Additive Manufacturing, 2016, 12: 240-251.
    [17] Gusarov A V, Pavlov M, Smurov I. Residual stresses at laser surface remelting and additive manufacturing[J]. Physics Procedia, 2011, 12: 248-254.
    [18] Zhu G, Zhang H, Zhang W F, et al. Test and analysis of the residual stress in Ti-3Al-2.5V tubes with different processes[J]. Rare Metal Materials and Engineering, 2014, 43(10): 2492-2496. 朱刚, 张晖, 张旺峰, 等. 高强度钛合金管材残余应力测试及对比分析[J]. 稀有金属材料与工程, 2014, 43(10): 2492-2496.
    [19] Yang J, Chen J, Yang H O, et al. Experimental study on residual stress distribution of laser rapid forming process[J]. Rare Metal Materials and Engineering, 2004, 33(12): 1304-1307. 杨健, 陈静, 杨海欧, 等. 激光快速成形过程中残余应力分布的实验研究[J]. 稀有金属材料与工程, 2004, 33(12): 1304-1307.
    [20] Liu Y, Yang Y Q, Wang D. A study on the residual stress during selective laser melting (SLM) of metallic powder[J]. The International Journal of Advanced Manufacturing Technology, 2016, 87: 647-656.
    [21] Yadroitsev I, Yadroitsava I. Evaluation of residual stress in stainless steel 316L and Ti6Al4V samples produced by selective laser melting[J]. Virtual and Physical Prototyping, 2015, 10(2): 67-76.
    [22] Cai C B, Li M Y, Han B, et al. Numerical simulation iron-based cladding coating with wide-band laser at different preheating temperatures[J]. Applied Laser, 2017, 37(1): 66-71. 蔡春波, 李美艳, 韩彬, 等. 不同预热温度下宽带激光熔覆铁基涂层数值模拟[J]. 应用激光, 2017, 37(1): 66-71.
    [23] Luo K Y, Zhou Y, Lu J Z, et al. Influence of laser shock peening on microstructure and property of cladding layer of 316L stainless steel[J]. Chinese Journal of Lasers, 2017, 44(4): 0402005. 罗开玉, 周阳, 鲁金忠, 等. 激光冲击强化对316L不锈钢熔覆层微观结构和性能的影响[J]. 中国激光, 2017, 44(4): 0402005.
    [24] Yang J, Huang W D, Chen J, et al. Residual stress on laser rapid forming metal part[J]. Applied Laser, 2004, 24(1): 5-8. 杨健, 黄卫东, 陈静, 等. 激光快速成形金属零件的残余应力[J]. 应用激光, 2004, 24(1): 5-8.
    [25] Mercelis P, Kruth J P. Residual stresses in selective laser sintering and selective laser melting[J]. Rapid Prototyping Journal, 2006, 12(5): 254-265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700