用户名: 密码: 验证码:
Advances in research into gamete and embryo-fetal origins of adult diseases
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in research into gamete and embryo-fetal origins of adult diseases
  • 作者:Kexin ; Zou ; Guolian ; Ding ; Hefeng ; Huang
  • 英文作者:Kexin Zou;Guolian Ding;Hefeng Huang;The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University;Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University;
  • 英文关键词:gamete;;embryo;;acquired inheritance;;intergenerational/transgenerational transmission;;epigenetic modification
  • 中文刊名:JCXG
  • 英文刊名:中国科学:生命科学(英文版)
  • 机构:The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University;Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University;
  • 出版日期:2019-01-25 17:16
  • 出版单位:Science China(Life Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by Special Fund for the National Key Research and Development Plan (2017YFC1001303);; National Natural Science Foundation of China (81490742 and 31571556)
  • 语种:英文;
  • 页:JCXG201903008
  • 页数:9
  • CN:03
  • ISSN:11-5841/Q
  • 分类号:78-86
摘要
The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.
        The fetal and infant origins of adult disease hypothesis proposed that the roots of adult chronic disease lie in the effects of adverse environments in fetal life and early infancy. In addition to the fetal period, fertilization and early embryonic stages, the critical time windows of epigenetic reprogramming, rapid cell differentiation and organogenesis, are the most sensitive stages to environmental disturbances. Compared with embryo and fetal development, gametogenesis and maturation take decades and are more vulnerable to potential damage for a longer exposure period. Therefore, we should shift the focus of adult disease occurrence and pathogenesis further back to gametogenesis and embryonic development events, which may result in intergenerational, even transgenerational, epigenetic re-programming with transmission of adverse traits and characteristics to offspring. Here, we focus on the research progress relating to diseases that originated from events in the gametes and early embryos and the potential epigenetic mechanisms involved.
引文
Bahous,R.H.,Jadavji,N.M.,Deng,L.,Cosín-Tomás,M.,Lu,J.,Malysheva,O.,Leung,K.Y.,Ho,M.K.,Pallàs,M.,Kaliman,P.,et al.(2017).High dietary folate in pregnant mice leads to pseudo-MTHFRdeficiency and altered methyl metabolism,with embryonic growth delay and short-term memory impairment in offspring.Hum Mol Genet26,888-900.
    Barker,D.J.,Osmond,C.,and Law,C.M.(1989a).The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis.J Epidemiol Commun Health 43,237-240.
    Barker,D.J.P.,Osmond,C.,Winter,P.D.,Margetts,B.,and Simmonds,S.J.(1989b).Weight in infancy and death from ischaemic heart disease.Lancet 334,577-580.
    Barker,D.J.,ed.(1992).Fetal and Infant Origins of Adult Disease.London:BMJ Books.
    Canani,R.B.,Di Costanzo,M.,Leone,L.,Bedogni,G.,Brambilla,P.,Cianfarani,S.,Nobili,V.,Pietrobelli,A.,and Agostoni,C.(2011).Epigenetic mechanisms elicited by nutrition in early life.Nutr Res Rev24,198-205.
    Cardozo,E.R.,Karmon,A.E.,Gold,J.,Petrozza,J.C.,and Styer,A.K.(2015).Reproductive outcomes in oocyte donation cycles are associated with donor BMI.Hum Reprod 207,dev298.
    Chen,H.,Zhang,L.,Deng,T.,Zou,P.,Wang,Y.,Quan,F.,and Zhang,Y.(2016).Effects of oocyte vitrification on epigenetic status in early bovine embryos.Theriogenology 86,868-878.
    Chen,Q.,Yan,M.,Cao,Z.,Li,X.,Zhang,Y.,Shi,J.,Feng,G.,Peng,H.,Zhang,X.,Zhang,Y.,et al.(2016).Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder.Science351,397-400.
    Ding,G.L.,Wang,F.F.,Shu,J.,Tian,S.,Jiang,Y.,Zhang,D.,Wang,N.,Luo,Q.,Zhang,Y.,Jin,F.,et al.(2012).Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia.Diabetes 61,1133-1142.
    Du,Z.,Zheng,H.,Huang,B.,Ma,R.,Wu,J.,Zhang,X.,He,J.,Xiang,Y.,Wang,Q.,Li,Y.,et al.(2017).Allelic reprogramming of 3D chromatin architecture during early mammalian development.Nature 547,232-235.
    Eckersley-Maslin,M.A.,Alda-Catalinas,C.,and Reik,W.(2018).Dynamics of the epigenetic landscape during the maternal-to-zygotic transition.Nat Rev Mol Cell Biol 19,436-450.
    Eckert,J.J.,Porter,R.,Watkins,A.J.,Burt,E.,Brooks,S.,Leese,H.J.,Humpherson,P.G.,Cameron,I.T.,and Fleming,T.P.(2012).Metabolic induction and early responses of mouse blastocyst developmental programming following maternal low protein diet affecting life-long health.PLoS ONE 7,e52791.
    Fleming,T.P.,Eckert,J.J.and Denisenko,O.(2017).The role of maternal nutrition during the periconceptional period and its effect on offspring phenotype.Adv Exp Med Biol 1014:87-105.
    Fleming,T.P.,Velazquez,M.A.,Eckert,J.J.,Lucas,E.S.,and Watkins,A.J.(2012).Nutrition of females during the peri-conceptional period and effects on foetal programming and health of offspring.Anim Reprod Sci130,193-197.
    Flyamer,I.M.,Gassler,J.,Imakaev,M.,Brand?o,H.B.,Ulianov,S.V.,Abdennur,N.,Razin,S.V.,Mirny,L.A.,and Tachibana-Konwalski,K.(2017).Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition.Nature 544,110-114.
    Gao,L.,Zhao,Y.C.,Liang,Y.,Lin,X.H.,Tan,Y.J.,Wu,D.D.,Li,X.Z.,Ye,B.Z.,Kong,F.Q.,Sheng,J.Z.,et al.(2016).The impaired myocardial ischemic tolerance in adult offspring of diabetic pregnancy is restored by maternal melatonin treatment.J Pineal Res 61,340-352.
    Gapp,K.,Jawaid,A.,Sarkies,P.,Bohacek,J.,Pelczar,P.,Prados,J.,Farinelli,L.,Miska,E.,and Mansuy,I.M.(2014).Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice.Nat Neurosci 17,667-669.
    Ge,Z.J.,Liang,X.W.,Guo,L.,Liang,Q.X.,Luo,S.M.,Wang,Y.P.,Wei,Y.C.,Han,Z.M.,Schatten,H.,and Sun,Q.Y.(2013).Maternal diabetes causes alterations of DNA methylation statuses of some imprinted genes in murine oocytes.Biol Reprod 88,117.
    Gkountela,S.,Zhang,K.X.,Shafiq,T.A.,Liao,W.W.,Hargan-Calvopi?a,J.,Chen,P.Y.,and Clark,A.T.(2015).DNA demethylation dynamics in the human prenatal germline.Cell 161,1425-1436.
    Gluckman,P.,and Harding,J.(1994).Nutritional and hormonal regulation of fetal growth-evolving concepts.Acta Paediatr 83,60-63.
    Gould,J.M.,Smith,P.J.,Airey,C.J.,Mort,E.J.,Airey,L.E.,Warricker,F.D.M.,Pearson-Farr,J.E.,Weston,E.C.,Gould,P.J.W.,Semmence,O.G.,et al.(2018).Mouse maternal protein restriction during preimplantation alone permanently alters brain neuron proportion and adult short-term memory.Proc Natl Acad Sci USA 115,E7398-E7407.
    Grandjean,V.,Fourré,S.,De Abreu,D.A.F.,Derieppe,M.A.,Remy,J.J.,and Rassoulzadegan,M.(2015).RNA-mediated paternal heredity of diet-induced obesity and metabolic disorders.Sci Rep 5,18193.
    Gu,T.P.,Guo,F.,Yang,H.,Wu,H.P.,Xu,G.F.,Liu,W.,Xie,Z.G.,Shi,L.,He,X.,Jin,S.,et al.(2011).The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.Nature 477,606-610.
    Guo,F.,Yan,L.,Guo,H.,Li,L.,Hu,B.,Zhao,Y.,Yong,J.,Hu,Y.,Wang,X.,Wei,Y.,et al.(2015).The transcriptome and DNA methylome landscapes of human primordial germ cells.Cell 161,1437-1452.
    Han,L.,Ren,C.,Li,L.,Li,X.,Ge,J.,Wang,H.,Miao,Y.L.,Guo,X.,Moley,K.H.,Shu,W.,et al.(2018).Embryonic defects induced by maternal obesity in mice derive from Stella insufficiency in oocytes.Nat Genet 50,432-442.
    Hanna,C.W.,Demond,H.,and Kelsey,G.(2018).Epigenetic regulation in development:is the mouse a good model for the human?Human Reprod Update 24,556-576.
    Hanson,M.A.,and Gluckman,P.D.(2014).Early developmental conditioning of later health and disease:physiology or pathophysiology?Physiol Rev 94,1027-1076.
    Hou,Y.J.,Zhu,C.C.,Duan,X.,Liu,H.L.,Wang,Q.,and Sun,S.C.(2016).Both diet and gene mutation induced obesity affect oocyte quality in mice.Sci Rep 6,18858.
    Hu,X.L.,Feng,C.,Lin,X.H.,Zhong,Z.X.,Zhu,Y.M.,Lv,P.P.,Lv,M.,Meng,Y.,Zhang,D.,Lu,X.E.,et al.(2014).High maternal serum estradiol environment in the first trimester is associated with the increased risk of small-for-gestational-age birth.J Clin Endocrinol Metab 99,2217-2224.
    Huypens,P.,Sass,S.,Wu,M.,Dyckhoff,D.,Tsch?p,M.,Theis,F.,Marschall,S.,Hraběde Angelis,M.,and Beckers,J.(2016).Epigenetic germline inheritance of diet-induced obesity and insulin resistance.Nat Genet 48,497-499.
    Joubert,B.R.,den Dekker,H.T.,Felix,J.F.,Bohlin,J.,Ligthart,S.,Beckett,E.,Tiemeier,H.,van Meurs,J.B.,Uitterlinden,A.G.,Hofman,A.,et al.(2016).Maternal plasma folate impacts differential DNA methylation in an epigenome-wide meta-analysis of newborns.Nat Commun 7,10577.
    Jungheim,E.S.,Schoeller,E.L.,Marquard,K.L.,Louden,E.D.,Schaffer,J.E.,and Moley,K.H.(2010).Diet-induced obesity model:abnormal oocytes and persistent growth abnormalities in the offspring.Endocrinology 151,4039-4046.
    Kanaka-gantenbein,C.,Mastorakos,G.,and Chrousos,G.P.(2003).Endocrine-related causes and consequences of intrauterine growth retardation.Ann New York Acad Sci 997,150-157.
    Ke,Y.,Xu,Y.,Chen,X.,Feng,S.,Liu,Z.,Sun,Y.,Yao,X.,Li,F.,Zhu,W.,Gao,L.,et al.(2017).3D chromatin structures of mature gametes and structural reprogramming during mammalian embryogenesis.Cell 170,367-381.e20.
    Krishnaveni,G.V.,Veena,S.R.,Karat,S.C.,Yajnik,C.S.,and Fall,C.H.D.(2014).Association between maternal folate concentrations during pregnancy and insulin resistance in Indian children.Diabetologia 57,110-121.
    Kuhtz,J.,Romero,S.,De Vos,M.,Smitz,J.,Haaf,T.,and Anckaert,E.(2014).Human in vitro oocyte maturation is not associated with increased imprinting error rates at LIT1,SNRPN,PEG3 and GTL2.Hum Reprod 29,1995-2005.
    Li,W.,Li,Z.,Li,S.,Wang,X.,Wilson,J.X.,and Huang,G.(2018).Periconceptional folic acid supplementation benefit to development of early sensory-motor function through increase DNA methylation in rat offspring.Nutrients 10,292.
    Liu,X.,Wang,C.,Liu,W.,Li,J.,Li,C.,Kou,X.,Chen,J.,Zhao,Y.,Gao,H.,Wang,H.,et al.(2016).Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos.Nature537,558-562.
    Lv,P.P.,Meng,Y.,Lv,M.,Feng,C.,Liu,Y.,Li,J.Y.,Yu,D.Q.,Shen,Y.,Hu,X.L.,Gao,Q.,et al.(2014).Altered thyroid hormone profile in offspring after exposure to high estradiol environment during the first trimester of pregnancy:a cross-sectional study.BMC Med 12,240.
    Lv,P.P.,Tian,S.,Feng,C.,Li,J.Y.,Yu,D.Q.,Jin,L.,Shen,Y.,Yu,T.T.,Meng,Y.,Ding,G.L.,et al.(2016).Maternal high estradiol exposure is associated with elevated thyroxine and Pax8 in mouse offspring.Sci Rep 6,36805.
    Marshall,K.L.,and Rivera,R.M.(2018).The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo.Mol Reprod Dev 85,90-105.
    Meng,Y.,Lv,P.P.,Ding,G.L.,Yu,T.T.,Liu,Y.,Shen,Y.,Hu,X.L.,Lin,X.H.,Tian,S.,Lv,M.,et al.(2015).High maternal serum estradiol levels induce dyslipidemia in human newborns via a hepatic HMGCRestrogen response element.Sci Rep 5,10086.
    Morgan,H.D.,Sutherland,H.G.E.,Martin,D.I.K.,and Whitelaw,E.(1999).Epigenetic inheritance at the agouti locus in the mouse.Nat Genet 23,314-318.
    Motrenko,T.(2010).Embryo-fetal origin of diseases-new approach on epigenetic reprogramming.Arch Perinat Med 6.
    Padmanabhan,N.,Jia,D.,Geary-Joo,C.,Wu,X.,Ferguson-Smith,A.C.,Fung,E.,Bieda,M.C.,Snyder,F.F.,Gravel,R.A.,Cross,J.C.,et al.(2013).Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development.Cell 155,81-93.
    Paneth,N.,and Susser,M.(1995).Early origin of coronary heart disease(the“Barker hypothesis”).Br Med J 310,411-412.
    Pliushch,G.,Schneider,E.,Schneider,T.,El Hajj,N.,R?sner,S.,Strowitzki,T.,and Haaf,T.(2015).In vitro maturation of oocytes is not associated with altered deoxyribonucleic acid methylation patterns in children from in vitro fertilization or intracytoplasmic sperm injection.Fertil Steril 103,720-727.e1.
    Radford,E.J.,Ito,M.,Shi,H.,Corish,J.A.,Yamazawa,K.,Isganaitis,E.,Seisenberger,S.,Hore,T.A.,Reik,W.,Erkek,S.,et al.(2014).In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism.Science 345,1255903.
    Rechavi,O.,Houri-Ze'evi,L.,Anava,S.,Goh,W.S.S.,Kerk,S.Y.,Hannon,G.J.,and Hobert,O.(2014).Starvation-induced transgenerational inheritance of small RNAs in C.elegans.Cell 158,277-287.
    Ren,J.,Cheng,Y.,Ming,Z.H.,Dong,X.Y.,Zhou,Y.Z.,Ding,G.L.,Pang,H.Y.,Rahman,T.U.,Akbar,R.,Huang,H.F.,et al.(2018).Intrauterine hyperglycemia exposure results in intergenerational inheritance via DNA methylation reprogramming on F1 PGCs.Epigenets Chromatin11,20.
    Rodgers,A.B.,Morgan,C.P.,Leu,N.A.,and Bale,T.L.(2015).Transgenerational epigenetic programming via sperm microRNArecapitulates effects of paternal stress.Proc Natl Acad Sci USA 112,13699-13704.
    Siklenka,K.,Erkek,S.,Godmann,M.,Lambrot,R.,McGraw,S.,Lafleur,C.,Cohen,T.,Xia,J.,Suderman,M.,Hallett,M.,et al.(2015).Disruption of histone methylation in developing sperm impairs offspring health transgenerationally.Science 350,aab2006.
    Skinner,M.K.,Guerrero-Bosagna,C.,and Haque,M.M.(2015).Environmentally induced epigenetic transgenerational inheritance of sperm epimutations promote genetic mutations.Epigenetics 10,762-771.
    Soubry,A.(2018).POHaD:why we should study future fathers.Environ Epigenets 4,dvy007.
    Stein,A.D.,Pierik,F.H.,Verrips,G.H.W.,Susser,E.S.,and Lumey,L.H.(2009).Maternal exposure to the Dutch famine before conception and during pregnancy.Epidemiology 20,909-915.
    Tan,Y.J.,Zhang,X.Y.,Ding,G.L.,Li,R.,Wang,L.,Jin,L.,Lin,X.H.,Gao,L.,Sheng,J.Z.,and Huang,H.F.(2015).Aquaporin7 plays a crucial role in tolerance to hyperosmotic stress and in the survival of oocytes during cryopreservation.Sci Rep 5,17741.
    Tian,S.,Lin,X.H.,Xiong,Y.M.,Liu,M.E.,Yu,T.T.,Lv,M.,Zhao,W.,Xu,G.F.,Ding,G.L.,Xu,C.M.,et al.(2017).Prevalence of prediabetes risk in offspring born to mothers with hyperandrogenism.EBioMedicine 16,275-283.
    Tobi,E.W.,Slieker,R.C.,Stein,A.D.,Suchiman,H.E.D.,Slagboom,P.E.,van Zwet,E.W.,Heijmans,B.T.,and Lumey,L.H.(2015).Early gestation as the critical time-window for changes in the prenatal environment to affect the adult human blood methylome.Int JEpidemiol 44,1211-1223.
    Veenendaal,M.V.E.,Painter,R.C.,de Rooij,S.R.,Bossuyt,P.M.M.,van der Post,J.A.M.,Gluckman,P.D.,Hanson,M.A.,and Roseboom,T.J.(2013).Transgenerational effects of prenatal exposure to the 1944-45Dutch famine.BJOG 120,548-554.
    Vickers,M.H.(2014).Early life nutrition,epigenetics and programming of later life disease.Nutrients 6,2165-2178.
    Wang,C.,Liu,X.,Gao,Y.,Yang,L.,Li,C.,Liu,W.,Chen,C.,Kou,X.,Zhao,Y.,Chen,J.,et al.(2018).Reprogramming of H3K9me3-dependent heterochromatin during mammalian embryo development.Nat Cell Biol 20,620-631.
    Wang,H.H.,Zhou,C.L.,Lv,M.,Yang,Q.,Li,J.X.,Hou,M.,Lin,J.,Liu,X.M.,Wu,Y.T.,Sheng,J.Z.,et al.(2018).Prenatal high estradiol exposure induces sex-specific and dietarily reversible insulin resistance through decreased hypothalamic INSR.Endocrinology 159,465-476.
    Wang,Q.,Tang,S.B.,Song,X.B.,Deng,T.F.,Zhang,T.T.,Yin,S.,Luo,S.M.,Shen,W.,Zhang,C.L.,and Ge,Z.J.(2018).High-glucose concentrations change DNA methylation levels in human IVMoocytes.Human Reprod 33,474-481.
    Watkins,A.J.,Lucas,E.S.,Torrens,C.,Cleal,J.K.,Green,L.,Osmond,C.,Eckert,J.J.,Gray,W.P.,Hanson,M.A.,and Fleming,T.P.(2010).Maternal low-protein diet during mouse pre-implantation development induces vascular dysfunction and altered renin-angiotensin-system homeostasis in the offspring.Br J Nutr 103,1762-1770.
    Watkins,A.J.,Ursell,E.,Panton,R.,Papenbrock,T.,Hollis,L.,Cunningham,C.,Wilkins,A.,Perry,V.H.,Sheth,B.,Kwong,W.Y.,et al.(2008a).Adaptive responses by mouse early embryos to maternal diet protect fetal growth but predispose to adult onset disease1.Biol Reprod 78,299-306.
    Watkins,A.J.,Wilkins,A.,Cunningham,C.,Perry,V.H.,Seet,M.J.,Osmond,C.,Eckert,J.J.,Torrens,C.,Cagampang,F.R.A.,Cleal,J.,et al.(2008b).Low protein diet fed exclusively during mouse oocyte maturation leads to behavioural and cardiovascular abnormalities in offspring.J Physiol 586,2231-2244.
    Wei,Y.,Yang,C.R.,Wei,Y.P.,Zhao,Z.A.,Hou,Y.,Schatten,H.,and Sun,Q.Y.(2014).Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals.Proc Natl Acad Sci USA 111,1873-1878.
    Wu,J.,Huang,B.,Chen,H.,Yin,Q.,Liu,Y.,Xiang,Y.,Zhang,B.,Liu,B.,Wang,Q.,Xia,W.,et al.(2016).The landscape of accessible chromatin in mammalian preimplantation embryos.Nature 534,652-657.
    Wu,L.L.,Russell,D.L.,Wong,S.L.,Chen,M.,Tsai,T.S.,St John,J.C.,Norman,R.J.,Febbraio,M.A.,Carroll,J.,and Robker,R.L.(2015).Mitochondrial dysfunction in oocytes of obese mothers:transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors.Development 142,681-691.
    Xu,G.F.,Zhang,J.Y.,Pan,H.T.,Tian,S.,Liu,M.E.,Yu,T.T.,Li,J.Y.,Ying,W.W.,Yao,W.M.,Lin,X.H.,et al.(2014).Cardiovascular dysfunction in offspring of ovarian-hyperstimulated women and effects of estradiol and progesterone:a retrospective cohort study and proteomics analysis.J Clin Endocrinol Metab 99,E2494-E2503.
    Xu,G.F.,Zhou,C.L.,Xiong,Y.M.,Li,J.Y.,Yu,T.T.,Tian,S.,Lin,X.H.,Liao,Y.,Lv,Y.,Zhang,F.H.,et al.(2017).Reduced intellectual ability in offspring of ovarian hyperstimulation syndrome:a cohort study.EBioMedicine 20,263-267.
    Zamudio,N.M.,Chong,S.,and O’Bryan,M.K.(2008).Epigenetic regulation in male germ cells.Reproduction 136,131-146.
    Zeltser,L.M.(2018).Feeding circuit development and early-life influences on future feeding behaviour.Nat Rev Neurosci 19,302-316.
    Zenk,F.,Loeser,E.,Schiavo,R.,Kilpert,F.,Bogdanovi?,O.,and Iovino,N.(2017).Germ line-inherited H3K27me3 restricts enhancer function during maternal-to-zygotic transition.Science 357,212-216.
    Zhang,L.,Han,L.,Ma,R.,Hou,X.,Yu,Y.,Sun,S.,Xu,Y.,Schedl,T.,Moley,K.H.,and Wang,Q.(2015).Sirt3 prevents maternal obesityassociated oxidative stress and meiotic defects in mouse oocytes.Cell Cycle 14,2959-2968.
    Zhang,Y.,Zhang,X.,Shi,J.,Tuorto,F.,Li,X.,Liu,Y.,Liebers,R.,Zhang,L.,Qu,Y.,Qian,J.,et al.(2018).Dnmt2 mediates intergenerational transmission of paternally acquired metabolic disorders through sperm small non-coding RNAs.Nat Cell Biol 20,535-540.
    Zhu,P.,Guo,H.,Ren,Y.,Hou,Y.,Dong,J.,Li,R.,Lian,Y.,Fan,X.,Hu,B.,Gao,Y.,et al.(2018).Single-cell DNA methylome sequencing of human preimplantation embryos.Nat Genet 50,12-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700