用户名: 密码: 验证码:
基于数值仿真的Al_2O_3陶瓷激光选区熔化表面微观组织形成机理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Formation Mechanism of Surface Microstructure in Selective Laser Melting of Alumina Ceramic Based on Numerical Simulation
  • 作者:马瑞芩 ; 张凯 ; 韦辉亮 ; 刘婷 ; 廖文和
  • 英文作者:Ma Ruiqin;Zhang Kai;Wei Huiliang;Liu Tingting;Liao Wenhe;College of Mechanical Engineering, Nanjing University of Science and Technology;National Joint Engineering Laboratory for Numerical Control Forming Technology and Equipment;
  • 关键词:激光技术 ; 表面微观组织 ; 激光选区熔化 ; 陶瓷 ; 贝纳德-马兰戈尼失稳 ; 马兰戈尼数
  • 英文关键词:laser technique;;surface microstructure;;selective laser melting;;ceramic;;Bénard-Marangoni-instability;;Marangoni number
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:南京理工大学机械工程学院;数控成形技术与装备国家地方联合工程实验室;
  • 出版日期:2018-10-29 07:05
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然科学基金(51775281);; 国家重点研发项目(2017YFB1103000)
  • 语种:中文;
  • 页:JJZZ201902006
  • 页数:8
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:48-55
摘要
基于数值仿真和实验研究了Al_2O_3陶瓷激光选区熔化(SLM)成形表面凝固组织的形成机理。结果表明:Al_2O_3陶瓷SLM成形具备发生贝纳德-马兰戈尼表面失稳的条件,随着激光能量减小,对流接近稳态;基板预热能够改变贝纳德-马兰戈尼对流状态;低激光功率、快扫描速度、低预热温度有助于形成稳态液体表面的层流流动。
        On the basis of numerical simulation and experiments, the formation mechanism of solidification microstructures on the alumina ceramic surface by selective laser melting(SLM) is clarified. The research results show that as for the SLM of alumina ceramic, the forming condition of Bénard-Marangoni surface instability is satisfied. As laser energy decreases, the convection is close to its steady state. The preheating of substrate can change the Bénard-Marangoni convection state. Low laser power,fast scanning speed and low preheating temperature are all beneficial to the formation of a steady laminar flow on the liquid surface.
引文
[1] Surendranathan A O. An introduction to ceramics and refractories[M]. Boca Raton: CRC Press, 2014: 7-18.
    [2] Bourell D, Kruth J P, Leu M, et al. Materials for additive manufacturing[J]. CIRP Annals, 2017, 66(2): 659-681.
    [3] Zhang K, Liu T T, Liao W H, et al. Experiment on selective laser melting forming of Al2O3 ceramics [J]. Chinese Journal of Lasers, 2016, 43(10): 1002007. 张凯, 刘婷婷, 廖文和, 等. 氧化铝陶瓷激光选区熔化成形实验[J]. 中国激光, 2016, 43(10): 1002007.
    [4] Zhang K, Liu T T, Liao W H, et al. Influence of laser parameters on the surface morphology of slurry-based Al2O3 parts produced through selective laser melting[J]. Rapid Prototyping Journal, 2018, 24(2): 333-341.
    [5] Chen Q, Guillemot G, Gandin C A, et al. Numerical modelling of the impact of energy distribution and Marangoni surface tension on track shape in selective laser melting of ceramic material[J]. Additive Manufacturing, 2018, 21: 713-723.
    [6] Panwisawas C, Qiu C L, Sovani Y, et al. On the role of thermal fluid dynamics into the evolution of porosity during selective laser melting[J]. Scripta Materialia, 2015, 105: 14-17.
    [7] Dai D H, Gu D D. Thermal behavior and densification mechanism during selective laser melting of copper matrix composites: simulation and experiments[J]. Materials & Design, 2014, 55(6): 482-491.
    [8] Takaichi A, Suyalatu A, Nakamoto T, et al. Microstructures and mechanical properties of Co-29Cr-6Mo alloy fabricated by selective laser melting process for dental applications[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 21(3): 67-76.
    [9] Cherry J A, Davies H M, Mehmood S, et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(5/6/7/8): 869-879.
    [10] Kruth J P, Badrossamay M, Yasa E, et al. Part and material properties in selective laser melting of metals[C]. International Symposium on Electromachining, 2010: 3-14.
    [11] Prashanth K G, Eckert J. Formation of metastable cellular microstructures in selective laser melted alloys[J]. Journal of Alloys and Compounds, 2017, 707: 27-34.
    [12] Zhou X. Research on micro-scale melt pool characteristics and solidified microstructures in selective laser melting[D]. Beijing: Tsinghua University, 2016: 79-98 周鑫. 激光选区熔化微尺度熔池特性与凝固微观组织[D]. 北京: 清华大学, 2016: 79-98.
    [13] Manvatkar V, De A, Debroy T. Spatial variation of melt pool geometry, peak temperature and solidification parameters during laser assisted additive manufacturing process [J]. Materials Science and Technology, 2015, 31(8): 924-930.
    [14] Li J F, Li L, Stott F H. Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials [J]. International Journal of Heat and Mass Transfer, 2004, 47(6/7): 1159-1174.
    [15] Dai D H, Gu D D, Li Y L, et al. Numerical simulation of metallurgical behavior of melt pool during selective laser melting of W-Cu composite powder system [J]. Chinese Journal of Lasers, 2013, 40(11): 1103001. 戴冬华, 顾冬冬, 李雅莉, 等. 选区激光熔化W-Cu复合体系熔池熔体运动行为的数值模拟 [J]. 中国激光, 2013, 40(11): 1103001.
    [16] Zhang K, Liu T T, Liao W H, et al. Simulation of temperature field during selective laser melting of alumina [J]. Journal of the Chinese Ceramic Society, 2017, 45(12): 1825-1832. 张凯, 刘婷婷, 廖文和, 等. 氧化铝激光选区熔化温度场模拟[J]. 硅酸盐学报, 2017, 45(12): 1825-1832.
    [17] McQuarrie M. Thermal conductivity: VII, analysis of variation of conductivity with temperature for Al2O3, BeO, and MgO[J]. Journal of the American Ceramic Society, 1954, 37(2): 91-95.
    [18] Zhang P H, Chang R Z, Wei Z, et al. Experimental measurement of enthalpy, melting point and melting heat for α-alumina in the range from 550-2400 K[J]. Acta Metrologica Sinica, 1986(2): 33-39. 张佩璜, 唱润忠, 魏臻, 等. 550~2400 K温区α-氧化铝焓值、熔点和熔化热的实验测定[J]. 计量学报, 1986(2): 33-39.
    [19] Paradis P F, Ishikawa T. Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques[J]. Japanese Journal of Applied Physics, 2005, 44(7A): 5082-5085.
    [20] Kou S, Limmaneevichitr C, Wei P S. Oscillatory Marangoni flow: a fundamental study by conduction-mode laser spot welding[J]. Welding Journal, 2011, 90(12): 229-240.
    [21] Daviaud F, Vince J M. Traveling waves in a fluid layer subjected to a horizontal temperature gradient [J]. Physical Review E, 1993, 48(6): 4432-4436.
    [22] Ueno I, Kurosawa T, Kawamura H. Thermocapillary convection in thin liquid layer with temperature gradient inclined to free surface[J]. Jasma Journal of the Japan Society of Microgravity Application, 2002, 19: 18-23.
    [23] Mizev A I, Schwabe D. Convective instabilities in liquid layers with free upper surface under the action of an inclined temperature gradient[J]. Physics of Fluids, 2009, 21(11): 112102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700