用户名: 密码: 验证码:
Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Water in the upper mantle and deep crust of eastern China: concentration, distribution and implications
  • 作者:Qun-Ke ; Xia ; Jia ; Liu ; István ; Kovács ; Yan-Tao ; Hao ; Pei ; Li ; Xiao-Zhi ; Yang ; Huan ; Chen ; Ying-Ming ; Sheng
  • 英文作者:Qun-Ke Xia;Jia Liu;István Kovács;Yan-Tao Hao;Pei Li;Xiao-Zhi Yang;Huan Chen;Ying-Ming Sheng;School of Earth Sciences, Zhejiang University;CAS Key Laboratory of Crust-Mantle Materials and Environments,University of Science and Technology of China;Hungarian Geological and Geophysical Institute;School of Earth Sciences and Engineering, Nanjing University;
  • 英文关键词:water;;upper mantle and deep crust;;continental stability;;basalt genesis;;eastern China
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:School of Earth Sciences, Zhejiang University;CAS Key Laboratory of Crust-Mantle Materials and Environments,University of Science and Technology of China;Hungarian Geological and Geophysical Institute;School of Earth Sciences and Engineering, Nanjing University;
  • 出版日期:2019-01-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported by the National Natural Science Foundation of China(41225005)
  • 语种:英文;
  • 页:NASR201901027
  • 页数:20
  • CN:01
  • ISSN:10-1088/N
  • 分类号:131-150
摘要
Understanding the concentration and distribution of water in the Earth's mantle plays a substantial role in studying its chemical, physical and dynamic processes. After a decade of research, a comprehensive dataset of water content in upper-mantle samples has been built for eastern China, which is now the only place with water-content data from such diverse types of natural samples, and provides an integrated picture of the water content and its distribution in the upper mantle at a continental scale. The main findings include the following:(i) the temporal heterogeneity of the water content in the lithospheric mantle from early Cretaceous(~120 Ma) to Cenozoic(<40 Ma) was tightly connected with the stability of the North China Craton(from its destruction to its consolidation);(ii) the heterogeneous water content in the Cenozoic lithospheric mantle beneath different blocks of eastern China was not only inherited from tectonic settings from which they came, but was also affected later by geological processes they experienced;(iii) the distinct water content between the lowermost crust and lithospheric mantle of eastern China and its induced rheological contrast at the base of the crust indicate that the continental crust–mantle boundary could behave either in a coupled or decoupled manner beneath different areas and/or at different stages;(iv) the alkali basalts of eastern China demonstrate a heterogeneous distribution of water content in the mantle;local and regional comparisons of the water content between the lithospheric mantle and basalts' source indicate that the Cenozoic alkali basalts in eastern China were not sourced from the lithospheric mantle.Instead, the inferred high water contents in the mantle sources suggest that the Cenozoic eastern China basalts were likely sourced from the mantle transition zone(MTZ); and(v) both oceanic and continental crusts may carry a certain amount of water back into the deep mantle of eastern China by plate subduction.Such recycled crustal materials have not only created a local water-rich zone, but have also introduced crustal geochemical signatures into the mantle, both accounting for crustal geochemical imprints in the intra-plate magmatic rocks of eastern China.
        Understanding the concentration and distribution of water in the Earth's mantle plays a substantial role in studying its chemical, physical and dynamic processes. After a decade of research, a comprehensive dataset of water content in upper-mantle samples has been built for eastern China, which is now the only place with water-content data from such diverse types of natural samples, and provides an integrated picture of the water content and its distribution in the upper mantle at a continental scale. The main findings include the following:(i) the temporal heterogeneity of the water content in the lithospheric mantle from early Cretaceous(~120 Ma) to Cenozoic(<40 Ma) was tightly connected with the stability of the North China Craton(from its destruction to its consolidation);(ii) the heterogeneous water content in the Cenozoic lithospheric mantle beneath different blocks of eastern China was not only inherited from tectonic settings from which they came, but was also affected later by geological processes they experienced;(iii) the distinct water content between the lowermost crust and lithospheric mantle of eastern China and its induced rheological contrast at the base of the crust indicate that the continental crust–mantle boundary could behave either in a coupled or decoupled manner beneath different areas and/or at different stages;(iv) the alkali basalts of eastern China demonstrate a heterogeneous distribution of water content in the mantle;local and regional comparisons of the water content between the lithospheric mantle and basalts' source indicate that the Cenozoic alkali basalts in eastern China were not sourced from the lithospheric mantle.Instead, the inferred high water contents in the mantle sources suggest that the Cenozoic eastern China basalts were likely sourced from the mantle transition zone(MTZ); and(v) both oceanic and continental crusts may carry a certain amount of water back into the deep mantle of eastern China by plate subduction.Such recycled crustal materials have not only created a local water-rich zone, but have also introduced crustal geochemical signatures into the mantle, both accounting for crustal geochemical imprints in the intra-plate magmatic rocks of eastern China.
引文
1.Mackwell SJ,Kohlstedt DL and Paterson MS.The role of water in the deformation of olivine single-crystals.J Geophys Res 1985;90:1319-33.
    2.Karato S,Paterson MS and Fitz-Gerald JD.Rheology of synthetic olivine aggregates:influence of grains size and water.J Geophys Res 1986;91:8151-76.
    3.Karato S.The role of hydrogen in the electrical conductivity of the upper mantle.Nature 1990;347:272-3.
    4.Graham CM and Elphick SC.Some experimental constraints on the role of hydrogen in oxygen and hydrogen diffusion and Al-Si interdiffusion in silicates.In:Ganguly J(ed.).Diffusion,atomic ordering,and mass transport selected topics in geochemistry.Adv Phys Geochem 1991;8:248-85.
    5.Meade C and Jeanloz R.Deep-focus earthquakes and recycling of water into the Earth’s mantle.Science 1991;252:68-72.
    6.Inoue T.Effect of water on melting phase relations and melt compositions in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa.Phys Earth Planet Inter 1994;85:237-63.
    7.Hirose K.Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesium andesitic melts.Geology 1997;25:42-4.
    8.Mei S and Kohlstedt DL.Influence of water on plastic deformation of olivine aggregates.I:Diffusion creep regime.J Geophys Res 2000;105:21457-69.
    9.Jung H and Karato S.Water-induced fabric transitions in olivine.Science2001;293:1460-3.
    10.Hofmeister AM.Enhancement of radiative transfer in the upper mantle by OH-in minerals.Phys Earth Planet Inter 2004;146:483-95.
    11.Wang Z,Hiraga T and Kohlstedt DL.Effect of H+on Fe-Mg interdiffusion in olivine,(Fe,Mg)2SiO4.Appl Phys Lett 2004;85:209-11.
    12.Hier-Majumder S,Mei S and Kohlstedt DL.Water weakening of clinopyroxeneite in diffusion creep.J Geophy Res 2005;110:B07406.
    13.Karato SI.Rheology of the deep upper mantle and its implications for the preservation of the continental roots:a review.Tectonophysics 2010;481:82-98.
    14.Gaetani GA,Grove TL and Bryan WB.1993.The influence of water on the petrogenesis of subduction related igneous rocks.Nature 365:332-4.
    15.Hirose K and Kawamoto T.Hydrous partial melting of lherzolite at 1 GPa:The effect on H2O on the genesis of basaltic magmas.Earth Planet Sci Lett 1995;133:463-73.
    16.Hirth G and Kohlstedt DL.Water in the oceanic upper mantle:Implications for rheology,melt extraction and the evolution of the lithosphere.Earth Planet Sci Lett 1996;144:93-108.
    17.Asimow PD and Langmuir CH.2003.The important of water to oceanic mantle melting regimes.Nature 421:815-20.
    18.Dixon JE,Dixon TH and Bell DR et al.Lateral variation in upper mantle viscosity:role of water.Earth Planet Sci Lett 2004;222:451-67.
    19.Hirschmann MM,Aubaud C and Withers AC.Storage capacity of H2O in nominally anhydrous minerals in the upper mantle.Earth Planet Sci Lett 2005;236:167-81.
    20.Hirschmann MM,Tenner T and Aubaud C et al.Dehydration melting of nominally anhydrous mantle:the primacy of partitioning.Phys Earth Planet Inter2009;176:54-68.
    21.Hauri EH,Gaetani GA and Green TH.Partitioning of water during melting of the Earth’s upper mantle at H2O-undersaturated conditions.Earth Planet Sci Lett 2006;248:715-34.
    22.Li ZX,Lee CT and Peslier AH et al.Water contents in mantle xenoliths from the Colorado Plateau and vicinity:Implications for the mantle rheology and hydration-induced thinning of continental lithosphere.J Geophys Res 2008;13,B0921010.1029/2007jb005540.
    23.Grove TL,Till CB and Krawczynski MJ.The role of H2O in subduction zone magmatism.Annu Rev Earth Planet Sci 2012;40:413-39.
    24.Green DH.Experimental petrology of peridotites,including effects of water and carbon on melting in the Earth’s upper mantle.Phys Chem Minerals 2015;42:95-122.
    25.Jordan TH.Composition and development of continental tectosphere.Nature1978;274:544-8.
    26.Pollack HN.Cratonization and thermal evolution of the mantle.Earth Planet Sci Lett 1986;80:175-82.
    27.Xia QK,Liu J and Liu SC et al.High water content in Mesozoic primitive basalts of the North China Craton and implications on the destruction of cratonic mantle lithosphere.Earth Planet Sc Lett 2013;361:85-97.
    28.Peslier AH,Woodland AB and Bell DR et al.Olivine water contents in the continental lithosphere and the longevity of cratons.Nature 2010;467:78-U108.
    29.Chen H,Xia QK and Ingrin J et al.Changing recycled oceanic components in the mantle source of the Shuangliao Cenozoic basalts,NE China:New constraints from water content.Tectonophysics.2015;650:113-23.
    30.Liu J,Xia QK and Deloule E et al.Recycled oceanic crust and marine sediment in the source of alkali basalts in Shandong,eastern China:evidence from magma water content and oxygen isotopes.J Geophys Res 2015;120:8281-303.
    31.Ohtani E.Hydrous minerals and the storage of water in the deep mantle.Chem Geol 2015;418:6-15.
    32.Peslier AH.A review of water contents of nominally anhydrous minerals in the mantles of Earth,Mars and the Moon.J Vol Geothem Res 2010;197:239-58.
    33.Demouchy S and Bolfan-Casanova N.Distribution and transport of hydrogen in the lithospheric mantle:A Review.Lithos 2016;240-243:402-25.
    34.Bell DR and Rossman GR.Water in Earth’s mantle:the role of nominally anhydrous minerals.Science 1992;255:1391-7.
    35.Rossman GR.Analytical methods for measuring water in nominally anhydrous minerals.Rev Mineral Geochem 2006;62:1-28.
    36.Aubaud C,Hauri EH and Hirschmann MM.Hydrogen partition coefficients between nominally anhydrous minerals and basaltic melts.Geophys Res Lett2004;31:2-5.
    37.Yang XZ,Deloule E and Xia QK et al.Water contrast between Precambrian and Phanerozoic continental lower crust in eastern China.J Geophys Res 2008;113:B08207.
    38.Kovács I,Hermann J and O’Neill HSC et al.Quantitative absorbance spectroscopy with unpolarized light:Part II.Experimental evaluation and development of a protocol for quantitative analysis of mineral IR spectra.Am Mineral2008;93:765-78.
    39.Aubaud C,Withers AC and Hirschmann MM et al.Intercalibration of FTIRand SIMS for hydrogen measurements in glasses and nominally anhydrous minerals.Am Mineral 2007;92:811-28.
    40.Xia QK,Hao YT and Li P et al.Low water content of the Cenozoic lithospheric mantle beneath the eastern part of the North China Craton.J Geophy Res2010;115:B07207.
    41.Xia QK,Hao YT and Liu SC et al.Water contents of the Cenozoic lithospheric mantle beneath the western part of the North China Craton:Peridotite xenolith constraints.Gond Res 2013;23:108-18.
    42.Yu Y,Xu XS and Griffin WL et al.H2O contents and their modification in the Cenozoic subcontinental lithospheric mantle beneath the Cathaysia block,SEChina.Lithos 2011;126:182-97.
    43.Hao YT,Xia QK and Liu SC et al.Recognizing juvenile and relict lithospheric mantle beneath the North China Craton:combined analysis of H2O major and trace elements and Sr-Nd isotope compositions of clinopyroxenes.Lithos2012;149:136-45.
    44.Hao YT,Xia QK and Li QW et al.Partial melting control of water contents in the Cenozoic lithospheric mantle of the Cathaysia block of South China.Chem Geol 2014;380:7-19.
    45.Hao YT,Xia QK and Jia ZB et al.Regional heterogeneity in the water content of the Cenozoic lithospheric mantle of Eastern China.J Geophys Res 2016;121:1-21.
    46.Wang Q,Bagdassarov N and Xia QK et al.Water contents and electrical conductivity of peridotite xenoliths from the North China Craton:implications for water distribution in the upper mantle.Lithos 2014;189:105-26.
    47.Li P,Xia QK and Deloule E et al.Temporal variation of H2O content in the lithospheric mantle beneath the eastern North China Craton:implications for the destruction of cratons.Gond Res 2015;28:276-87.
    48.Demouchy S,Ishikawa A and Tommasi A et al.Characterization of hydration in the mantle lithosphere:peridotite xenoliths from the Ontong Java Plateau as an example.Lithos 2015;212-215:189-201.
    49.Denis CMM,Alard O and Demouchy S.Water content and hydrogen behaviour during metasomatism in the uppermost mantle beneath Ray Pic volcano(Massif Central,France).Lithos 2015;236-7:256-74.
    50.Grant K,Ingrin J and Lorand JP et al.Water partitioning between mantle minerals from peridotite xenoliths.Contrib Mineral Petrol 2007;154:15-34.
    51.Ingrin J and Skogby H.Hydrogen in nominally anhydrous upper-mantle minerals:concentration levels and implications.Eur J Mineral 2000;12:543-70.
    52.Peslier AH,Luhr JF and Post J.Low water contents in pyroxenes from spinelperidotites of the oxidized,sub-arc mantle wedge.Earth Planet Sci Lett 2002;201:69-86.
    53.Peslier AH,Woodland AB and Bell DR et al.Metasomatic control of water contents in the Kaapvaal cratonic mantle.Geochim Cosmochim Acta 2012;97:213-46.
    54.Skogby H,Bell DR and Rossman GR.Hydroxide in pyroxene:variation in the natural enviroment.Am Mineral 1990;75:764-74.
    55.Sundvall R and Stalder R.Water in upper mantle pyroxene megacrysts and xenocrysts:a survey study.Am Mineral 2011;96:1215-27.
    56.Warren J and Hauri E.Pyroxenes as tracers of mantle water variations.JGeophy Res 2014;119:1851-81.
    57.Tian ZZ,Liu J and Xia QK et al.Water concentration profiles in natural mantle orthopyroxenes:a geochronometer for long annealing of xenoliths within magma.Geology 2017;45:87-90.
    58.Yang XZ,Xia QK and Deloule E et al.Water in minerals of continental lithospheric mantle and overlying lower crust:a comparative study of peridotite and granulite xenoliths from the North China Craton.Chem Geol 2008;256:33-45.
    59.Koga K,Hauri E and Hirschmann M et al.Hydrogen concentration analyses using SIMS and FTIR:comparison and calibration for nominally anhydrous minerals.Geochem Geophys Geosyst 2003;4,10.1029/2002GC000378.
    60.Withers AC and Hirschmann MM.H2O storage capacity of Mg Si O3clinoenstatite at 8-13 GPa,1,100-1,400?C.Contrib Mineral Petrol 2007;154:663-74.
    61.Withers AC and Hirschmann MM.Influence of temperature,composition,silica activity and oxygen fugacity on the H2O storage capacity of olivine at8 GPa.Contrib Mineral Petrol 2008;156:595-605.
    62.Tenner TJ,Hirschmann MM and Withers AC et al.Hydrogen partitioning between nominally anhydrous upper mantle minerals and melt between 3 and5 GPa and applications to hydrous peridotite partial melting.Chem Geol 2009;262:42-56.
    63.Adam J,Turner M and Hauri EH et al.Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite:comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism.Am Mineral 2016;101:876-88.
    64.Asimow PD,Dixon JE and Langmuir CH.A hydrous melting and fractionation model for mid-ocean ridge basalts:application to the Mid-Atlantic Ridge near the Azores.Geochem Geophy Geosyst 2004;5,10.1029/2003GC000568.
    65.Dixon JE,Stolper E and Delaney JR.Infrared spectroscopic measurements of CO2and H2O in Juan de Fuca Ridge basaltic glasses.Earth Planet Sci Lett1988;90:87-104.
    66.Michael PJ.The concentration,behavior and storage of H2O in the suboceanic upper mantle:implications for mantle metasomatism.Geochim Cosmochim Acta 1988;52:555-66.
    67.Saal AE,Hauri EH and Langmuir CH et al.Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle.Nature 2002;419:451-5.
    68.Simons K.Volatiles in basaltic glasses from the Easter-Salas y Gomez Seamount Chain and Easter Microplate:implications for geochemical cycling of volatile elements.Geochem Geophys Geosyst 2002;3,10.1029/2001GC000173.
    69.Sobolev AV and Chaussidon M.H2O concentrations in primary melts from supra-subduction zones and mid-ocean ridges:implications for H2O storage and recycling in the mantle.Earth Planet Sci Lett 1996;137:45-55.
    70.Dixon JE,Clague DA and Wallace P et al.Volatiles in alkalic basalts from the North Arch volcanic field,Hawaii:extensive degassing of deep submarineerupted alkalic series lavas.J Petrol 1997;38:911-39.
    71.Nichols ARL,Carroll MR and H¨oskuldsson′A.Is the Iceland hot spot also wet?Evidence from the water contents of undegassed submarine and subglacial pillow basalts.Earth Planet Sci Lett 2002;202:77-87.
    72.Seaman C,Sherman SB and Garcia MO et al.Volatiles in glasses from the HSDP2 drill core.Geochem Geophys Geosystems 2004;5,10.1029/2003GC000596.
    73.Wallace PJ.Volatiles in submarine basaltic glasses from the Northern Kerguelen Plateau(ODP Site 1140):implications for source region compositions,magmatic processes,and plateau subsidence.J Petrol 2002;43:1311-26.
    74.Workman RK,Hauri E and Hart SR et al.Volatile and trace elements in basaltic glasses from Samoa:implications for water distribution in the mantle.Earth Planet Sci Lett 2006;241:932-51.
    75.Falus G,Tommasi A and Ingrin J et al.Deformation and seismic anisotropy of the lithospheric mantle in the southeastern Carpathians inferred from the study of mantle xenoliths.Earth Planet Sci Lett 2008;272:50-64.
    76.Kovács I,Green DH and Rosenthal A et al.An experimental study of water in nominally anhydrous minerals in the upper mantle near the water-saturated solidus.J Petrol 2012;53:2067-93.
    77.Novella D and Frost DJ.The composition of hydrous partial melts of garnet peridotite at 6 GPa:implications for the origin of Group II Kimberlites.J Petrol2014;55:2097-124.
    78.Hao YT,Xia QK and Tian ZZ et al.Mantle metasomatism did not modify the water content of the peridotite xenoliths from the Tianchang basalts of eastern China.Lithos 2016;260:315-27.
    79.Liu SC and Xia QK.Water content in the early Cretaceous lithospheric mantle beneath the south-central Taihang Mountains:implications for the destruction of the North China Craton.Chin Sci Bull 2014;59:1362-5.
    80.Peslier AH,Woodland AB and Wolff JA.Fast kimberlite ascent rates estimated from hydrogen diffusion profiles in xenolithic mantle olivines from southern Africa.Geochim Cosmochim Acta 2008;72:2711-22.
    81.Baptiste V,Tommasi A and Demouchy S.Deformation and hydration of the lithospheric mantle beneath the Kaapvaal craton,South Africa.Lithos 2012;149:31-50.
    82.Xia QK,Yang X and Deloule E et al.Water in the lower crustal granulite xenoliths from Nushan,eastern China.J Geophys Res 2006;B11202,10.1029/2006JB004296.
    83.N′emeth B,T¨or¨ok K and Kovács I et al.Melting,fluid migration and fluid-rock interactions in the lower crust beneath the Bakony-Balaton Highland volcanic field:a silicate melt and fluid inclusion study.Miner Petrol 2015;109:217-34.
    84.Rudnick RL and Gao S.Composition of the continental crust.In:Rudnick RL(ed.).Treatise on Geochemistry:The Crust.Oxford:Elsevier-Pergamon,2003,1-64.
    85.Yang XZ.An experimental study of H solubility in feldspars:effect of composition,oxygen fugacity,temperature and pressure and implications for crustal processes.Geochim Cosmochim Acta 2012;97:46-57.
    86.Keppler H and Bolfan-Casanova N.Thermodynamics of water solubility and partitioning.Rev Mineral Geochem 2006;62:193-230.
    87.Yang XZ,Gaillard F and Scaillet B.A relatively reduced Hadean continental crust and implications for the early atmosphere and crustal rheology.Earth Planet Sci Lett 2014;393:210-9.
    88.Tang YJ,Zhang HF and Ying JF.Asthenosphere-litho spheric mantle interaction in an extensional regime:implication from the geochemistry of Cenozoic basalts from Taihang Mountains,North China Craton.Chem Geol 2006;233:309-27.
    89.Zeng G,Chen LH and Hofmann AW et al.Crust recycling in the sources of two parallel volcanic chains in Shandong,North China.Earth Planet Sci Lett 2011;302:359-68.
    90.Chen LH,Zeng G and Jiang SY et al.Sources of Anfengshan basalts:subducted lower crust in the Sulu UHP belt,China.Earth Planet Sc Lett.2009;286:426-35.
    91.Zhang JJ,Zheng YF and Zhao ZF.Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China.Lithos 2009;110:305-26.
    92.Xu Z,Zhao ZF and Zheng YF.Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China:geochemical evidence from Cenozoic continental basalts in central Shandong.Lithos 2012;146:202-17.
    93.Xu YG,Zhang HH and Qiu HN et al.Oceanic crust components in continental basalts from Shuangliao,Northeast China:derived from the mantle transition zone?Chem Geol 2012;328:168-84.
    94.Kuritani T,Ohtani E and Kimura JI.Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation.Nat Geosci 2011;4:713-6.
    95.Kuritani T,Kimura JI and Ohtani E et al.Transition zone origin of potassic basalts from Wudalianchi volcano,northeast China.Lithos 2013;156:1-12.
    96.Michael PJ.Regionally distinctive sources of depleted MORB:evidence from trace-elements and H2O.Earth Planet Sc Lett 1995;131:301-20.
    97.Dixon JE and Clague DA.Volatiles in basaltic glasses from Loihi seamount,Hawaii:evidence for a relatively dry plume component.J Petrol 2001;42:627-54.
    98.Dixon JE,Leist L and Langmuir C et al.Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.Nature 2002;420:385-9.
    99.Chen Y,Zhang Y and Graham D et al.Geochemistry of Cenozoic basalts and mantle xenoliths in Northeast China.Lithos 2007;96:108-26.
    100.Hong LB,Zhang YH and Qian SP et al.Constraints from melt inclusions and their host olivines on the petrogenesis of Oligocene-Early Miocene Xindian basalts,Chifeng area,North China Craton.Contrib Mineral Petrol 2013;165:305-26.
    101.Wang Y,Zhao ZF and Zheng YF et al.Geochemical constraints on the nature of mantle source for Cenozoic continental basalts in east-central China.Lithos2011;125:940-55.
    102.Chen H,Xia QK and Ingrin J.Water content of the Xiaogulihe ultrapotassic volcanic rocks,NE China:implications for the source of the potassium-rich component.Sci Bull.2015;60:1468-70.
    103.Chen H,Xia QK and Ingrin J et al.Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction.Earth Planet Sci Lett 2017;459:208-20.
    104.Liu J,Xia QK and Deloule E et al.Water content and oxygen isotopic composition of alkali basalts from the Taihang Mountains,China:recycled oceanic components in the mantle source.J Petrol 2015;56:681-702.
    105.Liu SC,Xia QK and Choi SH et al.Continuous supply of recycled Pacific oceanic materials in the source of Cenozoic basalts in SE China:the Zhejiang case.Contrib Mineral Petrol 2016;171:1-31.
    106.Wade JA,Plank T and Hauri EH et al.Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts.Geology 2008;36:799-802.
    107.Danyushevsky LV,Falloon TJ and Sobolev AV et al.The H2O content of basalt glasses from Southwest Pacific back-arc basins.Earth Planet Sci Lett 1993;117:347-62.
    108.Danyushevsky LV,Eggins SM and Falloon TJ et al.H2O abundance in depleted tomoderately enrichedmid-ocean ridge magmas;part I:incompatible behaviour,implications for mantle storage,and origin of regional variations.J Petrol 2000;41:1329-64.
    109.Dobson PF,Skogby H and Rossman GR.Water in boninite glass and coexisting orthopyroxene:concentration and partitioning.Contrib Mineral Petrol 1995;118:414-9.
    110.Hochstaedter AG,Gill JB and Kusakabe M et al.Volcanism in the Sumisu Rift.I.Major element,volatile,and stable isotope geochemistry.Earth Planet Sci Lett 1990;100:179-94.
    111.Sisson T and Layne G.H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes.Earth Planet Sci Lett 1993;117:619-35.
    112.Stolper E and Newman S.The role of water in the petrogenesis of Mariana Trough magmas.Earth Planet Sci Lett 1994;121:293-325.
    113.Wallace PJ.Water and partial melting in mantle plumes:inferences from the dissolved H2O concentrations of Hawaiian basaltic magmas.Geophys Res Lett 1998;25:3639-42.
    114.Wallace PJ.Volatiles in subduction zonemagmas:concentrations and fluxes based on melt inclusion and volcanic gas data.J Volcanol Geotherm Res 2005;140:217-40.
    115.Sun SS and Mc Donough WF.Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes.Geological Society,London,Special Publications 1989;42:313-45.
    116.Cabral RA,Jackson MG and Koga KT et al.Volatile cycling of H2O,CO2,F,and Cl in the HIMU mantle:a new window provided by melt inclusions from oceanic hot spot lavas at Mangaia,Cook Islands.Geochem Geophys Geosyst2014;15:4445-67.
    117.Kendrick MA,Jackson MG and Kent AJ et al.Contrasting behaviours of CO2,S,H2O and halogens(F,Cl,Br,and I)in enriched-mantle melts from Pitcairn and Society seamounts.Chem Geol 2014;370:69-81.
    118.Kendrick MA,Jackson MG and Hauri EH et al.The halogen(F,Cl,Br,I)and H2Osystematics of Samoan lavas:assimilated-seawater,EM2 and high-3He/4He components.Earth Planet Sci Lett 2015;410:197-209.
    119.Ruscitto DM,Wallace PJ and Cooper LB et al.Global variations in H2O/Ce.2.Relationships to arc magma geochemistry and volatile fluxes.Geochem Geophys Geosyst 2012;13,10.1029/2011GC003887.
    120.Wang XC,Wilde SA and Li QL et al.Continental flood basalts derived from the hydrous mantle transition zone.Nat Commun 2015;6:7700,10.1038/ncomms8700.
    121.Chen H,Xia QK and Liu J et al.MTZ source of the Cenozoic basalts of eastern China constrained by H2O content.2017;in preparation.
    122.Workman RK and Hart SR.Major and trace element composition of the depleted MORB mantle(DMM).Earth Planet Sc Lett 2005;231:53-72.
    123.Zhi X,Song Y and Frey FA et al.Geochemistry of Hannuoba basalts,eastern China:constraints on the origin of continental alkalic and tholeiitic basalt.Chem Geol 1990;88:1-33.
    124.Xu YG,Ma JL and Frey FA et al.Role of lithosphere-asthenosphere interaction in the genesis of Quaternary alkali and tholeiitic basalts from Datong,western North China Craton.Chem Geol 2005;224:247-71.
    125.Sakuyama T,Tian W and Kimura JI et al.Melting of dehydrated oceanic crust from the stagnant slab and of the hydrated mantle transition zone:constraints from Cenozoic alkaline basalts in eastern China.Chem Geol 2013;359:32-48.
    126.Xu YG.Recycled oceanic crust in the source of 90-40 Ma basalts in North and Northeast China:evidence,provenance and significance.Geochim Cosmochim Acta 2014;143:49-67.
    127.Xu Z,Zheng YF and Zhao ZF et al.The hydrous properties of subcontinental lithospheric mantle:constraints from water content and hydrogen isotope composition of phenocrysts from Cenozoic continental basalt in North China.Geochim Cosmochim Acta 2014;143:285-302.
    128.Bodnar RJ,Azbej T and Becker SP et al.Whole Earth geohydrologic cycle,from the clouds to the core:the distribution of water in the dynamic Earth system.In:Bickford ME(ed.).The web of geological sciences:advances,impacts,and interactions.Geol Soc Am Spec Paper 2013;500:431-61.
    129.Panero WR,Pigott JS and Reaman DM et al.Dry(Mg,Fe)SiO3perovskite in the Earth’s lower mantle.J Geophys Res 2015;120:894-908.
    130.Pearson DG,Brenker FE and Nestola F et al.Hydrous mantle transition zone indicated by ringwoodite included within diamond.Nature 2014;507:221-4.
    131.Fukao Y,Obayashi M and Inoue H et al.Subducting slabs stagnant in the mantle transition zone.J Geophys Res 1992;97:4809-22.
    132.Kelbert A,Schultz A and Egbert G.Global electromagnetic induction constraints on transition-zone water content variations.Nature 2009;460:1003-6.
    133.Zhang J,Zhang HF and Ying JF et al.Contribution of subducted Pacific slab to Late Cretaceous mafic magmatism in Qingdao region,China:a petrological record.Isl Arc 2008;17:231-41.
    134.Yang W,Teng FZ and Zhang HF et al.Magnesium isotopic systematics of continental basalts from the North China craton:implications for tracing subducted carbonate in the mantle.Chem Geol 2012;328:185-94.
    135.Huang JL and Zhao DP.High-resolution mantle tomography of China and surrounding regions.J Geophys Res 2006;111(B9),10.1029/2005JB004066.
    136.Kuang YS,Wei X and Hong LB et al.Petrogenetic evaluation of the Laohutai basalts from North China Craton:melting of a two-component source during lithospheric thinning in the late Cretaceous-early Cenozoic.Lithos 2012;154:68-82.
    137.Li HY,Huang XL and Guo H.Geochemistry of Cenozoic basalts from the Bohai Bay Basin:implications for a heterogeneous mantle source and lithospheric evolution beneath the eastern North China Craton.Lithos 2014;196:54-66.
    138.Li HY,Xu YG and Ryan JG et al.Olivine and melt inclusion chemical constraints on the source of intracontinental basalts from the eastern North China Craton:discrimination of contributions from the subducted Pacific slab.Geochim Cosmochim Acta 2016;178:1-19.
    139.Hawkesworth CJ,Hergt JM and Ellam RM et al.Element fluxes associated with subduction related magmatism.Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences1991;335:393-405.
    140.Tatsumi Y and Eggins S.Subduction Zone Magmatism.Oxford:Blackwell Science,1995,211.
    141.Zheng YF.Fluid regime in continental subduction zones:petrological insights from ultrahigh-pressure metamorphic rocks.J Geol Soc 2009;166:763-82.
    142.Zheng YF,Xia QX and Chen RX et al.Partial melting,fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision.Earth Sci Rev 2011;107:342-74.
    143.Zhang JF,Jin ZM and Green HW et al.Hydroxyl in continental deep subduction zone:evidence from UHP eclogites of the Dabie Mountains.Chin Sci Bull 2001;46:592-6.
    144.Zhang JF,Green HW and Bozhilov K et al.Faulting induced by precipitation of water at grain boundaries in hot subducting oceanic crust.Nature 2004;428:633-6.
    145.Xia QK,Sheng YM and Yang XZ et al.Heterogeneity of water in garnets from UHP eclogites,eastern Dabieshan,China.Chem Geol 2005;224:237-46.
    146.Sheng Y M,Xia Q K and Dallai L et al.H2O contents and D/H ratios of nominally anhydrous minerals from ultrahigh-pressure eclogites of the Dabie orogen,eastern China.Geochim Cosmochim Acta 2007;71:2079-103.
    147.Chen RX,Zheng YF and Gong B et al.Origin of retrograde fluid in ultrahighpressure metamorphic rocks:constraints from mineral hydrogen isotope and water content changes in eclogite-gneiss transitions in the Sulu orogen.Geochim Cosmochim Acta 2007;71:2299-325.
    148.Zhao ZF,Chen B and Zheng YF et al.Mineral oxygen isotope and hydroxyl content changes in ultrahigh-pressure eclogite-gneiss contacts from Chinese Continental Scientific Drilling Project cores.J Metamorph Geol 2007;25:165-86.
    149.Zhao XD and Zhang ZM.Water in omphacites from UHP eclogites in the CCSDmain hole.Acta Petrol Sin 2007;22:2039-50.
    150.Aines,RD and Rossman GR.Water content of mantle garnets.Geology 1984;12:720-3.
    151.Langer K,Rovarick E and Sobolev NV et al.Single-crystal spectra of garnets from diamondiferous high-pressure metamorphic rocks from Kazakhstan:indications for OH-,H2O,and Fe Ti charge transfer.Eur J Mineral 1993;5:1091-100.
    152.Snyder GA,Taylor LA and Jerde EA et al.Archean mantle heterogeneity and the origin of diamondiferous eclogites,Siberia:evidence from stable isotopes and hydroxyl in garnet.Am Mineral 1995;80:799-809.
    153.Matsyuk SS,Langer K and Hosch A.Hydroxyl defects in garnets from mantle xenoliths in kimberlites of the Siberian platform.Contrib Mineral Petrol 1998;132:163-79.
    154.Ragozin AL,Karimovac AA and Litasov KD et al.Water content in minerals of mantle xenoliths from the Udachnaya pipe kimberlites(Yakutia).Russ Geol Geophy 2014;55:428-42.
    155.Bell DR,Rossman GR and Moore RO.Abundance and partitioning of OH in a high-pressure magmatic system:megacrysts from the Monastery kimberlite,South Africa.J Petrol 2004;45:1539-64.
    156.Katayama I,Nakashima S and Yurimoto H.Water content in natural eclogite and implication for water transport into the deep upper mantle.Lithos 2006;86:245-59.
    157.Skogby H,Janák M and Broska I.Water incorporation in omphacite:concentrations and compositional relations in ultrahigh-pressure eclogites from Pohorje,Eastern Alps.Eur J Mineral 2016;28:631-9.
    158.Su W,You ZD and Cong BL et al.Cluster of water molecules in garnet from ultrahigh-pressure eclogite.Geology 2002;30:611-4.
    159.Liu FL and Xu ZQ.Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks from southwestern Sulu terrane in eastern China.Chin Sci Bull 2004;49:396-404.
    160.Zhang ZM,Shen K and Xiao YL et al.Mineral and fluid inclusions in zircon of UHP metamorphic rocks from the CCSD-main drill hole:a record of metamorphism and fluid activity.Lithos 2006;92:378-98.
    161.Meng DW,Wu XL and Fan XY et al.Submicron-sized fluid inclusions and distribution of hydrous components in jadeite,quartz and symplectite-forming minerals from UHP jadeite-quartzite in the Dabie Mountains,China:TEM and FTIR investigation.App Geochem 2009;24:517-26.
    162.Xiao YL,Zhang ZM and Hoefs J et al.Ultrahigh-pressure metamorphic rocks from the Chinese Continental Scientific Drilling Project.II.Oxygen isotope and fluid inclusion distributions through vertical sections.Contrib Mineral Petrol2006;152:443-58.
    163.Zheng Y,Zhao Z and Chen Y.Continental subduction channel processes:Plate interface interaction during continental collision.Chin Sci Bull 2013;58:4371-7.
    164.Katayama I and Nakashima S.Hydroxyl in clinopyroxene from the deep subducted crust:evidence for H2O transport into the mantle.Am Mineral 2003;88:229-34.
    165.Su W,Ji ZP and Ye K et al.Distribution of hydrous components in jadeite of the Dabie Mountains.Earth Planet Sci Lett 2004;222:85-100.
    166.Hirschmann MM.Water,melting and the deep Earth water cycle.Annu Rev Earth Planet Sci 2006;34:629-53.
    167.Li XP,Zheng YF and Wu YB et al.Low-T eclogite in the Dabie terrane of China:petrological and isotopic constraints on fluid activity and radiometric dating.Contrib Mineral Petrol 2004;148:443-70.
    168.Guo S,Ye K and Chen Y et al.Fluid-rock interaction and element mobilization in UHP metabasalt:constraints from an omphacite-epidote vein and host eclogites in the Dabie orogen.Lithos 2012;136-9:145-67.
    169.Lu R and Keppler H.Water solubility in pyrope to l00 kbar.Contrib Mineral Petrol 1997;129:35-42.
    170.Withers AC,Wood BJ and Carroll MR.The OH contents of pyrope at high pressure.Chem Geol 1998;147:161-71.
    171.Mosenfelder JL.Pressure dependence of hydroxyl solubility in coesite.Phys Chem Miner 2000;27:610-7.
    172.Rauch M and Keppler H.Water solubility in orthopyroxene.Contrib Mineral Petrol 2002;143:525-36.
    173.Koch-M¨uller M,Dera P and Fei YW et al.OH-in synthetic and natural coesite.Am Mineral 2003;88:1436-45.
    174.Bromiley G.Solubility of hydrogen and ferric iron in rutile and Ti O2(II):implications for phase assemblages during ultrahigh-pressure metamorphism and for the stability of silica polymorphs in the lower mantle.Geophys Res Lett2004;31:L04610,10.1029/2004GL019430(4).
    175.Mierdel K and Keppler H.The temperature dependence of water solubility in enstatite.Contrib Mineral Petrol 2004;148:305-11.
    176.Yang XZ and Mc Cammon C.Fe3+-rich augite and high electrical conductivity in the deep lithosphere.Geology 2012;40:131-4.
    177.Bizimis M and Peslier AH.Water in Hawaiian garnet pyroxenites:implications for water heterogeneity in the mantle.Chem Geol 2015;397:61-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700