用户名: 密码: 验证码:
分布式能源技术与发展现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Technologies and Development Status for Distributed Energy Resources
  • 作者:国旭涛 ; 蔡洁聪 ; 韩高岩 ; 谢娜 ; 吕洪坤
  • 英文作者:GUO Xutao;CAI Jiecong;HAN Gaoyan;XIE Na;LYU Hongkun;State Grid Zhejiang Electric Power Research Institute;Hangzhou E.Energy Technology Co., Ltd.;
  • 关键词:分布式能源 ; 能源效率 ; 经济性
  • 英文关键词:distributed energy resources;;energy efficiency;;economy
  • 中文刊名:FBNY
  • 英文刊名:Distributed Energy
  • 机构:国网浙江省电力有限公司电力科学研究院;杭州意能电力技术有限公司;
  • 出版日期:2019-02-15
  • 出版单位:分布式能源
  • 年:2019
  • 期:v.4;No.16
  • 语种:中文;
  • 页:FBNY201901010
  • 页数:8
  • CN:01
  • ISSN:10-1427/TK
  • 分类号:55-62
摘要
分布式能源具有能源利用效率高、环保、可靠性高的优点,是实现能源可持续发展的关键。将分布式能源分为热电联产、可再生能源、储能和燃料电池四大类,从技术原理和发展现状两个方面对其进行讨论。另外,分布式能源追求能源、环境和经济三者的效益最大化,而影响用户选择分布式能源的主要因素是经济性。
        Distributed energy resources(DERs) is key to sustainable development of energy, which has the advantages of high energy efficiency, environmental protection and high reliability. This paper dividing DERs into four types: combined heat and power, renewable energy, energy storage and fuel cells and discusses it from two aspects: technical principle and development. In general, DERs seek to maximize the benefits of energy, environment and economy. But the main factor affecting users' choice of distributed energy is economy.
引文
[1] IBRAHIM O, FARDOUN F, YOUNES R, et al. Review of water-heating systems: General selection approach based on energy and environmental aspects[J]. Build and Environment, 2014, 72: 259-286.
    [2] IBRAHIM O, FARDOUN F, YOUNES R, et al. Multivariable optimization for future electricity-plan scenarios in Lebanon[J]. Energy Policy, 2013, 58: 49-56.
    [3] FARDOUN F, IBRAHIM O, YOUNES R, et al. Electricity of lebanon: Problems and recommendations[J]. Energy Procedia, 2012, 19: 310-320.
    [4] IBRAHIM O, FARDOUN F, YOUNES R, et al. Energy status in Lebanon and electricity generation reform plan based on cost and pollution optimization[J]. Renewable and Sustainable Energy Reviews, 2013, 20: 255-278.
    [5] AL-SULAIMAN F A, DINCER I, HAMDULLAHPUR F. Energy analysis of a trigeneration plant based on solid oxide fuel cell and organic Rankine cycle[J]. International Journal of Hydrogen Energy, 2010, 35(10): 5104-5113.
    [6] WU D W, WANG R Z. Combined cooling, heating and power: A review[J]. Progress in Energy and Combustion Science, 2006, 32(5-6): 459-495.
    [7] JABLKO R, SANITER C, HANITSCH R, et al. Technical and economical comparison of micro CHP systems[C]//2005 International Conference on Future Power Systems. Amsterdam: IEEE, 2005: 1-6.
    [8] United Nations Economic and Social Commission for Asia and the Pacific. Guidebook on cogeneration as a means of pollution control and energy efficiency in Asia[M]. New York: United Nations publication, 2000.
    [9] AL MOUSSAWI H, FARDOUN F, LOUAHLIA-GUALOUS H. Review of tri-generation technologies: Design evaluation, optimization, decision-making, and selection approach[J]. Energy Conversion and Management, 2016, 120: 157-196.
    [10] AL MOUSSAWI H, FARDOUN F, LOUAHLIA H. Selection based on differences between cogeneration and trigeneration in various prime mover technologies[J]. Renewable and Sustainable Energy Reviews, 2017, 74: 491-511.
    [11] 林世平, 李先瑞, 陈斌. 燃气冷热电分布式能源技术应用手册[M]. 北京: 中国电力出版社. 2014.
    [12] WANG Z, HAN W, ZHANG N, et al. Assessment of off-design performance of a combined cooling, heating and power system using exergoeconomic analysis[J]. Energy Conversion and Management, 2018, 171: 188-195.
    [13] üNAL A N, ERCAN S, KAYAKUTLU G. Optimization studies on trigeneration: A review[J]. International Journal of Energy Research, 2015, 39(10): 1311-1334.
    [14] 清华大学建筑节能研究中心, 国际能源署. 中国区域清洁供暖发展研究报告[R]. 巴黎: 国际能源署, 2018.
    [15] 国务院. 国务院关于印发大气污染防治行动计划的通知[EB/OL]. (20130912)[20190126]. http://www.gov.cn/zwgk/2013G09/12/content_2486773.htm.
    [16] BP Global Energy. BP statistical review of 2018 world energy[R]. BP Global Energy, 2018 (67): 1-53.
    [17] 张远巍, 郭枭, 汪凌飞, 等. 新型太阳能光伏光热一体化系统性能实验研究[J]. 可再生能源, 2018, 36(10): 1449-1454. ZHANG Yuanwei, GUO Xiao, WANG Lingfei, et al. Experimental study of a new solar hybrid photovoltaic-thermal modules[J]. Renewable Energy Resources, 2018, 36(10): 1449-1454.
    [18] 马敏杰. 全球风能资源时空分布特征及开发潜力评价[D]. 成都: 电子科技大学, 2018. MA Minjie. Temporal and spatial distribution characteristics and development potential of global wind energy resource[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
    [19] HE G, KAMMEN D M. Where, when and how much wind is available—A provincial-scale wind resource assessment for China[J]. Energy Policy, 2014, 74: 116-122.
    [20] Global Wind Energy Council. Global wind report 2016[R]. Delhi: Global Wind Energy Council, 2017.
    [21] 王瑾瑾, 金光, 王宇星, 等. 分布式能源技术在内蒙古地区应用的可行性分析[J]. 分布式能源, 2018, 3(1): 50-57. WANG Jinjin, JIN Guang, WANG Yuxing, et al. Feasibility analysis on distributed energy technology in Inner Mongolia[J]. Distributed Energy, 2018, 3(1): 50-57.
    [22] 兰忠成. 中国风能资源的地理分布及风电开发利用初步评价[D]. 兰州: 兰州大学, 2015. LAN Zhongcheng. Preliminary evaluation on the geographic distribution of wind energy resources and its development and utilization in China[D]. Lanzhou: Lanzhou University, 2015.
    [23] 陈向国, 汪集暘. 科学、理性迎接我国地热资源开发利用第二春[J]. 节能与环保, 2017(10): 16-17.
    [24] 自然资源部中国地质调查局, 再生能源司, 中国科学院科技战略咨询研究院, 国务院发展研究中心资源, 环境政策研究所. 中国地热能发展报告(2018)[R]. 北京: 自然资源部中国地质调查局, 2018.
    [25] 韩晓平. 实现“十三五”能源规划目标需推进能源革命[J]. 中国石油和化工, 2017(3): 32-32.
    [26] 王朔, 周格, 禹习谦, 等. 储能技术领域发表文章和专利概览综述[J]. 储能科学与技术, 2017, 6(4): 810-838. WANG Shuo, ZHOU Ge, YU Xiqian, et al. Overview of research papers and patents on energy storage technologies[J]. Energy Storage Science and Technology, 2017, 6(4): 810-838.
    [27] 封红丽. 2016年全球储能技术发展现状与展望[J]. 中国产业经济动态, 2016(19): 39-43.
    [28] 吴娟, 龙新峰. 热化学储能的研究现状与发展前景[J]. 现代化工, 2014, 34(9): 17-21. WU Juan, LONG Xinfeng. Research status and prospects for thermochemical energy storage[J]. Modern Chemical Industry, 2014, 34(9): 17-21.
    [29] 金红光, 郑丹星, 徐建中. 分布式冷热电联产系统装置及应用[M]. 北京: 中国电力出版社. 2010.
    [30] 王吉华, 居钰生, 易正根, 等. 燃料电池技术发展及应用现状综述(上)[J]. 现代车用动力, 2018(2): 7-12, 39. WANG Jihua, JU Yusheng, YI Zhenggen, et al. Review on development and application of fuel cell technology (1)[J]. Modern Vehicle Power, 2018(2): 7-12, 39.
    [31] YU Z, HAN J, CAO X, et al. Analysis of total energy system based on solid oxide fuel cell for combined cooling and power applications[J]. International Journal of Hydrogen Energy, 2010, 35(7): 2703-2707.
    [32] AL-SULAIMAN F A, HAMDULLAHPUR F, DINCER I. Trigeneration: A comprehensive review based on prime movers[J]. International Journal of Energy Research, 2011, 35(3): 233-258.
    [33] 尹祥, 赵先勤, 陈锦芳. 天然气分布式能源支持政策与经济敏感性分析[J]. 煤气与热力, 2017, 37(1): 31-35.
    [34] 高传峰, 朱佳斌, 寿恩广. 燃气分布式能源主要经济评价指标及计算方法分析[J]. 科技与创新, 2018(18): 126-127.
    [35] 韩中合, 祁超, 向鹏, 等. 分布式能源系统效益分析及综合评价[J]. 热力发电, 2018, 47(2): 31-36. HAN Zhonghe, QI Chao, XIANG Peng, et al. Benefit analysis and comprehensive evaluation for distributed energy system[J]. Thermal Power Generation, 2018, 47(2): 31-36.
    [36] 邹道安, 陈金耀, 黄琪薇, 等. 楼宇型分布式能源系统技术经济研究[J]. 能源工程, 2017(3): 20-26, 48. ZOU Daoan, CHEN Jinyao, HUANG Qiwei, et al. Technical and economic research on building distributes energy systems[J]. Energy Engineering, 2017(3): 20-26, 48.
    [37] 周灵宏. 浅谈分布式能源的冷热电联产系统[J]. 城市建设理论研究, 2013(36): 2095-2104.
    [38] 左远志, 杨晓西. 影响我国分布式能源发展的因素分析[J]. 天然气工业, 2007, 27(7): 121-123.
    [39] 赵子嫣, 王灿, 潘超琼, 等. 含分布式新能源的热电联供系统运行优化[J]. 分布式能源, 2018, 3(4): 9-15. ZHAO Ziyan, WANG Can, PAN Chaoqiong, et al. Optimal operation of combined heating and power system with distributed renewable energy[J]. Distributed Energy, 2018, 3(4): 9-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700