用户名: 密码: 验证码:
基于机器学习的中小跨径公路梁桥抗震设计评价方法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Seismic Design Evaluation Methods for Highway Medium-span and Small-span Girder Bridges Based on Machine Learning
  • 作者:王克海 ; 鲁冠亚 ; 张盼盼
  • 英文作者:WANG Ke-hai;LU Guan-ya;ZHANG Pan-pan;Research Institute of Highway,Ministry of Transport;School of Transportation,Southeast University;
  • 关键词:桥梁工程 ; 抗震设计评价 ; 综述 ; 中小跨径梁桥 ; 机器学习
  • 英文关键词:bridge engineering;;seismic design and evaluation;;review;;medium-span and small-span girder bridges;;machine learning
  • 中文刊名:GLJK
  • 英文刊名:Journal of Highway and Transportation Research and Development
  • 机构:交通运输部公路科学研究院;东南大学交通学院;
  • 出版日期:2019-02-15
  • 出版单位:公路交通科技
  • 年:2019
  • 期:v.36;No.290
  • 基金:科技部国际科技合作项目(2009DFA82480);; 交通运输部西部交通建设科技项目(2009318223094);交通运输部公路工程行业标准项目(JTG-C-201012);; 中央级公益性科研院所基本科研业务费项目(2016-9018)
  • 语种:中文;
  • 页:GLJK201902011
  • 页数:11
  • CN:02
  • ISSN:11-2279/U
  • 分类号:78-88
摘要
为了探究机器学习方法在桥梁抗震中实现的基本思路,简要回顾了桥梁抗震分析理论与技术的发展和现状,综述了机器学习的应用领域,特别是在土木工程领域中的应用现状。介绍了机器学习的概念,总结了其关键因素和搭载平台,通过简单实例说明了机器学习的常用方法和代表算法。首先,总结了我国公路中小跨径桥梁多采用简支梁和连续梁的梁桥形式,同时统计了汶川地震中该类桥型的震害现象,包括桥墩、支座和挡块、桥台根据震害现象的破坏等级划分。其次,总结了国内外学者针对支座和挡块、桥墩、桥台开展的一系列抗震性能试验研究,回归出用于抗震分析的本构关系,进而得到桥梁各构件(包括基础)的抗震设计因素。最后,阐述了机器学习方法辅助该类桥梁抗震设计和评价中实现的总体思路,说明面向桥梁抗震任务的机器学习主要有两方面的工作:第一项是收集数量可观的桥梁设计资料,建立数据集;第二项是数据挖掘,包括对原始数据的处理,调试或开发合理的机器学习算法模型,并简要探讨了现有基于性能的概率抗震设计和评价方法对我国桥梁进行分析时存在的不足。在此基础上,指出下一步工作,展望桥梁抗震分析技术的未来发展方向——基于人工智能的桥梁抗震研究,并倡导学科之间的相互融合及专业人员之间的相互交流。
        In order to explore the basic thinking of machine learning method in bridge seismic resistance,the development and actuality of bridge seismic analysis theory and technology are briefly reviewed,and the application field of machine learning is summarized,especially in the field of civil engineering. The concept of machine learning is introduced,its key factors and current software platforms are summed up,and the common methods and representative algorithms of machine learning are illustrated by simple examples. First,it is summarized that the highway bridges with medium and small spans in China mainly use the types of simply supported girder bridge and continuous girder bridge,meanwhile,the earthquake damage phenomenon of these bridges in the Wenchuan earthquake are counted,including the damage level division of piers,bearings,shear keys and abutments according to earthquake damage phenomenon. Second,a series ofseismic performance tests by international and domestic academics for bearings,shear keys,piers and abutments are summarized,which are used to sum up the constitutive relationships for seismic analysis,and then the seismic design factors of bridge components( including foundation) are obtained. Finally,the overall analysis methodology based on machine learning to assist seismic design and evaluation of such bridges is introduced,which explained that the machine learning for the bridge seismic resistance tasks mainly has 2aspects: the first is to collect the considerable amount of bridge design data and set up the dataset; the second is data mining,including processing of raw data,debugging or developing a reasonable machine learning algorithm model. The shortcomings of the existing performance-based probabilistic seismic design and evaluation method for analyzing Chinese bridges are discussed briefly. On this basis,the work of the next step is pointed out,and the major concerns in bridge seismic analysis technology in the future are discussed,i. e.,research on bridge seismic resistance based on artificial intelligence,and advocating the mutual integration between disciplines and the mutual communication among professionals.
引文
[1]庞浩,王枞.用于糖尿病视网膜病变检测的深度学习模型[J].软件学报,2017,28(11):3018-3029.PANG Hao, WANG Cong. Deep Learning Model for Diabetic Retinopathy Detection[J]. Journal of Software,2017,28(11):3018-3029.
    [2] LESMANA I P D,PURNAMA I K E,PURNOMO M H.Abnormal Condition Detection of Pancreatic Beta-cells as the Cause of Diabetes Mellitus Based on Iris Image[C]//2011 International Conference on Instrumentation,Communication,Information Technology and Biomedical Engineering. Bandung,Indonesia:IEEE,2011:135-141.
    [3]赵建明,李春晖,姚念民.基于机器学习的宋词风格识别[J].计算机工程与应用,2018,54(1):186-190.ZHAO Jian-ming, LI Chun-hui, YAO Nian-min.Classification of Sonci Style Using Machine Learning Algorithms[J]. Computer Engineering and Applications,2018,54(1):186-190.
    [4]沈敏,杨新涯,王楷.基于机器学习的高校图书馆用户偏好检索系统研究[J].图书情报工作,2015(11):143-148.SHEN Min,YANG Xin-ya,WANG Kai. Research on User Preference Retrieval System of University Library Based on Machine Learning[J]. Library and Information Service,2015(11):143-148.
    [5]郭璘,周继彪,董升,等.基于改进K-means算法的城市道路交通事故分析[J].中国公路学报,2018,31(4):270-279.GUO Lin,ZHOU Ji-biao,DONG Sheng,et al. Analysis of Urban Road Traffic Accidents Based on Improved Kmeans Algorithm[J]. China Journal of Highway and Transport,2018,31(4):270-279.
    [6] GREGORIADES A, MOUSKOS K C. Black Spots Identification through a Bayesian Networks Quantification of Accident Risk Index[J]. Transportation Research Part C:Emerging Technologies,2013,28:28-43.
    [7]笱程成,秦宇君,田甜,等.一种基于RNN的社交消息爆发预测模型[J].软件学报,2017,28(11):3030-3042.GOU Cheng-cheng, QIN Yu-jun, TIAN Tian, et al.Social Messages Outbreak Prediction Model Based on Recurrent Neural Network[J]. Journal of Software,2017,28(11):3030-3042.
    [8] KONONENKO I. Machine Learning for Medical Diagnosis:History,State of the Art and Perspective[J].Artificial Intelligence in Medicine,2001,23(1):89-109.
    [9] LUCIANI D,MARCHESI M,BERTOLINI G. The Role of Bayesian Networks in the Diagnosis of Pulmonary Embolism[J]. Journal of Thrombosis and Haemostasis,2003,1(4):698-707.
    [10]沙爱民,童峥,高杰.基于卷积神经网络的路表病害识别与测量[J].中国公路学报,2018,31(1):1-10.SHA Ai-min,TONG Zheng,GAO Jie. Recognition and Measurement of Pavement Disasters Based on Convolutional Neural Networks[J]. China Journal of Highway and Transport,2018,31(1):1-10.
    [11] WORDEN K,MANSON G. The Application of Machine Learning to Structural Health Monitoring[J].Philosophical Transactions,2007,365(1851):515-537.
    [12] NAEEJ M,BALI M,NAEEJ M R,et al. Prediction of Lateral Confinement Coefficient in Reinforced Concrete Columns Using M5’ Machine Learning Method[J].KSCE Journal of Civil Engineering, 2013, 17(7):1714-1719.
    [13] SADOWSKI L,HOLA J. Neural Prediction of the Pull-off Adhesion of the Concrete Layers in Floors on the Basis of Nondestructive Tests[J]. Procedia Engineering,2013,57(3):986-995.
    [14] CHOU J S,TSAI C F,PHAM A D,et al. Machine Learning in Concrete Strength Simulations:Multi-nation Data Analytics[J]. Construction and Building Materials,2014,73:771-780.
    [15] VANLUCHENE R D, SUN R. Neural Networks in Structural Engineering[J]. Microcomputers in Civil Engineering,1990,5(3):207-215.
    [16] HUNG S L, JAN J C. MS_CMAC Neural Network Learning Model in Structural Engineering[J]. Journal of Computing in Civil Engineering,1999,13(1):1-11.
    [17] KICINGER R, ARCISZEWSKI T, DE JONG K.Evolutionary Computation and Structural Design:A Survey of the State-of-the-art[J]. Computers and Structures,2005,83(23):1943-1978.
    [18] KICINGER R, ARCISZEWSKI T, DE JONG K.Evolutionary Design of Steel Structures in Tall Buildings[J]. Journal of Computing in Civil Engineering,2005,19(3):223-238.
    [19] JOOTOO A,LATTANZI D. Bridge Type Classification:Supervised Learning on a Modified NBI Data Set[J].Journal of Computing in Civil Engineering, 2017, 31(6):1-11.
    [20]陈雨人,付云天,汪凡.基于支持向量回归的视距计算模型建立和应用[J].中国公路学报,2018,31(4):105-113.CHEN Yu-ren,FU Yun-tian,WANG Fan. Establishment and Application of Sight Distance Computing Model Based on Support Vector Regression[J]. China Journal of Highway and Transport,2018,31(4):105-113.
    [21] ABDULHAI B, PRINGLE R, KARAKOULAS G J.Reinforcement Learning for the True Adaptive Traffic Signal Control[J]. Journal of Transportation Engineering,2003,129(3):278-285.
    [22] CHIEN J Y S I,DING Y,WEI C. Dynamic Bus Arrival Time Prediction with Artificial Neural Networks[J].Journal of Transportation Engineering,2002,128:429-438.
    [23]王珏,石纯一.机器学习研究[J].广西师范大学学报:自然科学版,2003,21(2):1-15.WANG Jue, SHI Chun-yi. Investigations on Machine Learning[J]. Journal of Guangxi Normal University(Natural Science Edition),2003,21(2):1-15.
    [24]周志华.机器学习[M].北京:清华大学出版社,2016.ZHOU Zhi-hua. Machine Learning[M]. Beijing:Tsinghua University Press,2016.
    [25]焦嘉烽,李云.大数据下的典型机器学习平台综述[J].计算机应用,2017,37(11):3039-3047.JIAO Jia-feng, LI Yun. Review of Typical Machine Learning Platforms for Big Data[J]. Journal of Computer Applications,2017,37(11):3039-3047.
    [26]唐振坤.基于Spark的机器学习平台设计与实现[D].厦门:厦门大学,2014.TANG Zhen-kun. Design and Implementation of Machine Learning Platform Based on Spark[D]. Xiamen:Xiamen University,2014.
    [27]陈乐生.汶川地震公路震害调查:桥梁[M].北京:人民交通出版社,2012.CHEN Le-sheng. Report on Highways’ Damage in the Wenchuan Earthquake:Bridges[M]. Beijing:China Communications Press,2012.
    [28]王克海,韦韩,李茜,等.中小跨径公路桥梁抗震设计理念[J].土木工程学报,2012,45(9):115-121.WANG Ke-hai,WEI Han,LI Qian,et al. Philosophies on Seismic Design of Highway Bridges of Small or Medium Spans[J]. China Civil Engineering Journal,2012,45(9):115-121.
    [29]王克海,李冲,李茜,等.考虑支座摩擦滑移的中小跨径桥梁抗震设计方法[J].工程力学,2014,31(6):85-92.WANG Ke-hai,LI Chong,LI Qian,et al. Seismic Design Method of Small and Medium Span Bridge Considering Bearing Friction Slipping[J]. Engineering Mechanics,2014,31(6):85-92.
    [30]李冲,王克海,李悦,等.板式橡胶支座摩擦滑移抗震性能试验研究[J].东南大学学报:自然科学版,2014,44(1):162-167.LI Chong,WANG Ke-hai,LI Yue,et al. Experimental Study on Seismic Performance of Laminated Rubber Bearings with Friction Slipping[J]. Journal of Southeast University:Natural Science Edition, 2014, 44(1):162-167.
    [31]汤虎,李建中,邵长宇.中小跨径板式橡胶支座梁桥横向抗震性能[J].中国公路学报,2016,29(3):55-65.TANG Hu, LI Jian-zhong, SHAO Chang-yu. Seismic Performance of Small and Medium Span Girder Bridges with Plate Type Elastomeric Pad Bearings in the Transverse Direction[J]. China Journal of Highway and Transport,2016,29(3):55-65.
    [32]吴刚,王全录,王克海,等.考虑支座及挡块力学性能退化的桥梁横向地震响应分析[J].振动与冲击,2018,37(2):189-196.WU Gang, WANG Quan-lu, WANG Ke-hai, et al.Transverse Seismic Response Analysis for Bridges Considering Performance Degradation of Bearings and Stoppers[J]. Journal of Vibration and Shock,2018,37(2):189-196.
    [33]李枝军,葛飞,徐秀丽,等.板式橡胶支座性能有限元模拟与试验研究[J].东南大学学报:自然科学版,2013,43(6):1299-1304.LI Zhi-jun,GE Fei,XU Xiu-li,et al. Finite Element Simulation and Experimental Study of Property for Elastomeric Pad Bearing[J]. Journal of Southeast University:Natural Science Edition, 2013, 43(6):1299-1304.
    [34] XIANG N L,LI J Z. Experimental and Numerical Study on Seismic Sliding Mechanism of Laminated Rubber Bearings[J]. Engineering Structures,2017,141:159-174.
    [35] STEELMAN J S,FAHNESTOCK L A,FILIPOV E T,et al. Shear and Friction Response of Nonseismic Laminated Elastomeric Bridge Bearings Subject to Seismic Demands[J]. Journal of Bridge Engineering,2013,18(7):612-623.
    [36] KONSTANTINIDIS D, KELLY J M, MAKRIS N.Experimental Investigations on the Seismic Response of Bridge Bearings, EERC 2008-02[R]. Berkeley:Earthquake Engineering Research Center, College of Engineering,University of California,2008.
    [37]汪洋,曹加良,施卫星.盆式橡胶支座基础隔震结构地震模拟振动台试验研究[J].建筑结构,2013(7):9-13.WANG Yang, CAO Jia-liang, SHI Wei-xing. Shaking Table Test Study of Base-isolated Structure with Pot Bearings[J]. Building Structure,2013(7):9-13.
    [38]张士臣,黎国清,庄军生. QPZ型盆式橡胶支座的试验研究和设计[J].铁道建筑,1992(9):13-17.ZHANG Shi-chen, LI Guo-qing, ZHUANG Jun-sheng.Test Study and Design of QPZ Pot Rubber Bearings[J].Railway Engineering,1992(9):13-17.
    [39]朱文骏.桥梁盆式支座地震作用下的力学性能研究[D].哈尔滨:中国地震局工程力学研究所,2015.ZHU Wen-jun. Research on Seismic Response of Bridge Pot Bearings[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2015.
    [40] JT/T 391——2009,公路桥梁盆式支座[S].JT/T 391—2009,Pot Bearings for Highway Bridges[S].
    [41] JTG/T B02-01—2008,公路桥梁抗震设计细则[S].JTG/T B02-01—2008,Guidelines for Seismic Design of Highway Bridges[S].
    [42] MEGALLY S H, SILVA P F, SEIBLE F. Seismic Response of Sacrificial Shear Keys in Bridge Abutments,SSRP-2001/23[R]. San Diego:Structural Systems Research Project,University of California,2001.
    [43]徐略勤,李建中.钢筋混凝土挡块抗震性能及改进试验[J].中国公路学报,2014,27(9):41-48.XU Lue-qin, LI Jian-zhong. Experiment on Seismic Performance and Its Improvement of Reinforced Concrete Retainers[J]. China Journal of Highway and Transport,2014,27(9):41-48.
    [44]徐略勤,李建中.挡块对规则连续梁桥横向地震反应的影响[J].公路交通科技,2013,30(4):53-59.XU Lue-qin, LI Jian-zhong. Effect of Retainers on Transverse Seismic Response of a Standard Continuous Girder Bridge[J]. Journal of Highway and Transportation Research and Development,2013,30(4):53-59.
    [45]徐略勤,李建中.新型滑移挡块的设计、试验及防震效果研究[J].工程力学,2016,33(2):111-118.XU Lue-qin, LI Jian-zhong. Design and Experimental Investigation of a New Type Sliding Retainer and Its Efficacy in Seismic Fortification[J]. Engineering Mechanics,2016,33(2):111-118.
    [46] PAULAY T, PRISTLEY M J N. Seismic Design of Reinforced Concrete and Masonry Buildings[M]. New York:Wiley-inter Science,1992.
    [47] PRISTLEY M J N. Strength and Ductility of Concrete Bridge Columns under Seismic Loading[J]. ACI Structural Journal Proceedings,1987,1(1):61-76.
    [48] WATSON S, ZAHN F A, PARK R. Confining Reinforcement for Concrete Columns[J]. Journal of Structural Engineering,1994,120(6):1798-1824.
    [49] WATSON S,PARK R. Simulated Seismic Load Tests on Reinforced Concrete Columns[J]. Journal of Structural Engineering,1994,120(6):1825-1849.
    [50]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2001.FAN Li-chu,ZHUO Wei-dong. Ductile Seismic Design of Bridge[M]. Beijing:China Communications Press,2001.
    [51]孙治国.钢筋混凝土桥墩抗震变形能力研究[D].哈尔滨:中国地震局工程力学研究所,2012.SUN Zhi-guo. Research on Seismic Deformation Capacity of RC Bridge Piers[D]. Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2012.
    [52] KENT D C,PARK R. Flexural Members with Confined Concrete[J]. Journal of the Structural Division,1971,97:1969-1990.
    [53] SCOTT B D,PARK R,PRIESTLEY M J N. Stress-strain Behavior of Concrete Confined by Overlapping Hoops at Low and High Strain Rates[J]. ACI Journal,1982,79(1):13-27.
    [54] MANDER J B,PRIESTLEY M J,PARK R. Theoretical Stress-strain Model for Confined Concrete[J]. Journal of Structural Engineering,1988,114(8):1804-1826.
    [55] Caltrans. Caltrans Seismic Design Criteria[S]. Version1. 7. Sacramento:California Department of Transportation,2013.
    [56]王常峰,陈兴冲.桩基础桥梁非线性地震反应分析模型及试验研究[J].桥梁建设,2014,44(3):57-62.WANG Chang-feng,CHEN Xing-chong. Analytical Model and Experimental Study of Nonlinear Seismic Response of Bridge with Pile Foundations[J]. Bridge Construction,2014,44(3):57-62.
    [57] NIELSON B G. Analytical Fragility Curves for Highway Bridges in Moderate Seismic Zones[D]. Atlanta,GA:Georgia Institute of Technology,2005.
    [58] RAMANATHAN K N. Next Generation Seismic Fragility Curves for California Bridges Incorporating the Evolution in Seismic Design[D]. Atlanta,GA:Georgia Institute of Technology,2012.
    [59]王克海,李冲,李悦.中国公路桥梁抗震设计规范中存在的问题及改进建议[J].建筑科学与工程学报,2013,30(2):55-103.WANG Ke-hai,LI Chong,LI Yue. Problems in Chinese Highway Bridge Seismic Specifications and Suggestions for Improvement[J]. Journal of Architecture and Civil Engineering,2013,30(2):55-103.
    [60]宋帅,钱永久,吴刚.基于Copula函数的桥梁系统地震易损性方法研究[J].工程力学,2016,33(11):193-200.SONG Shuai,QIAN Yong-jiu,WU Gang. Research on Seismic Fragility Method of Bridge System Based on Copula Function[J]. Engineering Mechanics,2016,33(11):193-200.
    [61]王克海.桥梁抗震研究[M]. 2版.北京:中国铁道出版社,2015.WANG Ke-hai. Research on Bridge Seismic Resistance[M]. 2nd ed. Beijing:China Railway Publishing House,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700