用户名: 密码: 验证码:
设计参数对铅黏弹性连梁阻尼器力学性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of Mechanical Performance of Lead Viscoelastic Coupling Beam Damper by Design Parameters
  • 作者:房晓俊 ; 周云
  • 英文作者:FANG Xiaojun;ZHOU Yun;Department of Civil Engineering,Guangzhou University;
  • 关键词:功能自恢复 ; 铅黏弹性连梁阻尼器 ; 力学性能 ; 设计参数
  • 英文关键词:self-resilient;;lead viscoelastic coupling beam damper;;mechanic performance;;design parameter
  • 中文刊名:SYJZ
  • 英文刊名:Journal of Shenyang Jianzhu University(Natural Science)
  • 机构:广州大学土木工程学院;
  • 出版日期:2019-01-15
  • 出版单位:沈阳建筑大学学报(自然科学版)
  • 年:2019
  • 期:v.35;No.178
  • 基金:国家重点研发计划重点专项(2017YFC0703608)
  • 语种:中文;
  • 页:SYJZ201901002
  • 页数:11
  • CN:01
  • ISSN:21-1578/TU
  • 分类号:7-17
摘要
目的研究铅芯边距、铅芯直径、剪切钢板与约束钢板厚度比、复合黏弹性层中薄钢板与黏弹性层厚度比以及剪切模量对其力学性能的影响,给出各设计参数的建议值.方法采用ABAQUS软件建立铅黏弹性连梁阻尼器的有限元模型;然后对15组铅黏弹性连梁阻尼器进行参数分析,研究不同设计参数对铅黏弹性连梁阻尼器力学性能的影响规律;最后给出各设计参数的取值建议.结果铅黏弹性连梁阻尼器滞回曲线饱满,表现出良好的耗能能力.各设计参数对铅黏弹性连梁阻尼器力学性能具有不同程度的影响,铅芯直径显著影响屈服荷载、屈服位移、最大阻尼力和等效黏滞阻尼比,对屈服后刚度具有较大影响;铅芯边距和剪切钢板与约束钢板厚度比主要影响屈服位移,而铅芯直径、剪切模量主要影响屈服后刚度;薄钢板与黏弹性层厚度比和钢材类型对力学性能影响较小.结论铅芯宜对称布置在复合黏弹性层外侧,铅芯边距取1~1. 5倍的铅芯直径;铅黏弹性连梁阻尼器需求的屈服承载力可由铅芯直径大小确定;剪切钢板与约束钢板厚度比取1. 00~2. 00,且剪切钢板厚度宜取0. 8倍的复合黏弹性层厚度;薄钢板与黏弹性层厚度比取0. 4~0. 8,且优先取较小值;宜选用低硬度的黏弹性材料和强度高的钢材以保证阻尼器正常工作,发挥其稳定的耗能能力.
        This paper studied the influence of the lead viscoelastic coupling beam damper 's( LVCBD) mechanical performance caused by different parameters,including the distance between lead core's center and outside edge of the composited viscoelastic layer,lead core diameter,thick-ness ratio of shear plate to constrained plate,thickness ratio of thin plate to viscoelastic layer in the composited viscoelastic layer and shear modulus,which provides the suggested values of the design parameters. 15 groups of LVCBD models with different parameters are established and analyzed through finite element software called ABAQUS. The results showthat: The hysteretic curve of LVCBD is full,showing a good energy dissipation capacity. The design parameters have different effects on mechanical performance of LVCBD,The lead diameter has significant influence on LVCBD's yield force,yield displacement,maximum damping force and equivalent viscous damping ratio,and also affects the post-yield stiffness; yield displacement is mainly affected by the distance between lead core's center and outside edge of the composited viscoelastic layer and the thickness ratio of shear plate to constrained plate,while the lead diameter and shear modulus mainly affect the post-yield stiffness; the thickness ratio of thin plate to viscoelastic layer and steel type slightly affect LVCBD 's mechanical performance. The conclusion is as follows: the lead core should be symmetrically arranged on the outside of the composited viscoelastic layer and the distance should be 1 ~ 1. 5 times of lead core diameter; the lead core diameter should be determine by requirements of the LVCBD 's yield capacity; the thickness ratio of shear plate to constrained plate should be1. 00 ~ 2. 00,and the thickness of shear plate should be 0. 8 times of the thickness of the composited viscoelastic layer; the thickness ratio of thin plate to viscoelastic layer should be 0. 4 ~ 0. 8 and the smaller value should be taken priority; viscoelastic material with lowhardness and higher strength steel plate are recommended to guarantee the normal work of LVCBD and exert a stable energy dissipation capacity.
引文
[1] FORTNEY P J,SHAHROOZ B M,RASSATI GA. The next generation of coupling beams[C]//5th international conference on composite construction in steel and concrete. USA:ASCE,2006:619-630.
    [2]熊谷仁志,島崎和司,林静雄.中央部に鋼材ダンパーを有するRC境界梁に関する実験的研究—低降伏点鋼を用いた境界梁ダンパーに関する研究(その1)[J].日本建築学会構造系論文集,2009,74(638):755-763.(HITOSHI K,KAZUSHI S,SHIZUO H. Experimental study on coupling beams with steel dampers in mid-span:coupling beam dampers with lowyield point steel(part 1)[J]. Journal of structural&construction engineering,2009,74(638):755-763.
    [3]熊谷仁志,島崎和司,林静雄.中央部に鋼材ダンパーを有するRC境界梁の復元力特性:低降伏点鋼を用いた境界梁ダンパーに関する研究その2[J].日本建築学会構造系論文集,2009,74(643):1677-1684.(HITOSHI K,KAZUSHI S,SHIZUO H. Restoring force characteristic of coupling beam dampers:coupling beam dampers with lowyield point steel(part 2)[J]. Journal of structural&construction engineering,2009,74(643):1677-1684.
    [4] CHUNGH S,MOON B W,LEE S K,et al.Seismic performance of friction dampers using flexure of RC shear wall system[J]. Structural design of tall&special buildings,2009,18(7):807-822.
    [5] CHRISTOPOULOS C,MONTGOMERY M.Viscoelastic coupling dampers(VCDs)for enhanced wind and seismic performance of highrise buildings[J]. Earthquake engineering&structural dynamics,2013,42(15):2217-2233.
    [6] MONTGOMERY M,CHRISTOPOULOS C.Experimental validation of viscoelastic coupling dampers for enhanced dynamic performance of high-rise buildings[J]. Journal of structural engineering,2014,141(5):04014145.
    [7] KIMH J,CHOI K S,OH S H,et al. Comparative study on seismic performance of conventional RC coupling beams and hybrid energy dissipative coupling beams used for RC shear walls[C]//15WCEE,Lisbon,Portugal,2012,Paper-ID:2254.
    [8]吕西林,陈云,蒋欢军.带可更换连梁的双肢剪力墙抗震性能试验研究[J].同济大学学报(自然科学版),2014,42(2):175-182.(LüXilin,CHEN Yun,JIANGHuanjun. Experimental study of seismic performance of coupled shear wall structure with replaceable coupling beams[J]. Journal of tongji university(natural science),2014,42(2):175-182.)
    [9]纪晓东,马琦峰,王彦栋,等.钢连梁可更换消能梁段抗震性能试验研究[J].建筑结构学报,2014,35(6):1-11.(JI Xiaodong,MA Qifeng,WANGYandong,et al. Cyclic test of replaceable shear links in steel coupling beams[J]. Journal of building structures,2014,35(6),1-11.)
    [10]纪晓东,王彦栋,马琦峰,等.可更换钢连梁抗震性能试验研究[J].建筑结构学报,2015,36(10):1-10.(JI Xiaodong,WANGYandong,MA Qifeng,et al. Experimental study on seismic behavior of replaceable steel coupling beams[J]. Journal of building structures,2015,36(10):1-10.)
    [11]周云,石菲,邓雪松.一种联肢剪力墙的消能减震连梁构造:CN205653916[P]. 2016.(ZHOU Yun,SHI Fei,DENGXuesong. An energy dissipating coupling beam in coupled shear wall:ZL CN205653916[P]. 2016.)
    [12]石菲,周云,邓雪松.设计参数对铅'阻尼器力学性能影响的有限元分析[J].建筑结构学报,2016,37(增刊1):62-70.(SHI Fei,ZHOU Yun,DENGXuesong. Analysis of influence on mechanical performance of lead viscoelastic dampers by design parameters[J]. Journal of building structures,2016,37(S1),62-70.)
    [13]石菲.新型(铅)黏弹性阻尼器性能与应用研究[D].广州:广州大学,2012:49-72.(SHI Fei. Performance and application research of(lead)viscoelastic damper[D]. Guangzhou:Guangzhou University,2012:49-72.)
    [14]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:51-60.(SHI Yiping,ZHOU Yurong. ABAQUS FEA example explanation[M]. Beijing:Machinery Industry Press,2006:51-60.)
    [15]张少实,庄茁.复合材料与粘弹性力学[M].北京:机械工业出版社,2007:165-176.(ZHANGShaoshi,ZHUANGZhuo. Composite materials and viscoelastic mechanics[M].Beijing:Machinery Industry Press,2007:165-176.)
    [16] GRACIA L A,LIARTE E,PELEGAY J L,CALVO B. Finite element simulation of the hysteretic behavior of an industrial rubber:application to design of rubber components[J].Finite element in analysis and design,2010,46(4):357-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700