用户名: 密码: 验证码:
紫外光固化石墨烯涂层棉织物的导电性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electric conductivity of cotton fabrics by graphene UV curable coating
  • 作者:曹机良 ; 徐李聪 ; 孟春 ; 李晓春
  • 英文作者:CAO Jiliang;XU Licong;MENG Chunli;LI Xiaochun;Department of Materials and Chemical Engineering, Henan University of Engineering;
  • 关键词:可穿戴 ; UV光固化 ; 智能纺织品 ; 导电性能 ; 石墨烯
  • 英文关键词:wearable;;UV curable;;smart textile;;electrical conductivity of cotton fabric;;graphene
  • 中文刊名:FZXB
  • 英文刊名:Journal of Textile Research
  • 机构:河南工程学院材料与化学工程学院;
  • 出版日期:2019-02-15
  • 出版单位:纺织学报
  • 年:2019
  • 期:v.40;No.395
  • 基金:河南省高等学校重点科研项目(18B540001);; 河南工程学院博士基金资助项目(Dkj2018005)
  • 语种:中文;
  • 页:FZXB201902023
  • 页数:6
  • CN:02
  • ISSN:11-5167/TS
  • 分类号:141-146
摘要
为获得柔性导电纺织材料,采用紫外(UV)光固化技术将还原氧化石墨烯(RGO)印制于棉织物表面。探究了RGO、聚氨酯丙烯酸酯(PUA)、光引发剂1173和三羟甲基丙烷三丙烯酸酯(TMPTA)质量分数及UV光固化时间对棉织物导电性能的影响,测试了整理织物的导电性和导电耐久性,通过扫描电子显微镜分析对整理织物的形貌。研究结果表明,随着RGO质量分数增加,织物的导电性增强,但导电耐久性降低,随着PUA、光引发剂1173和TMPTA质量分数增加及固化时间延长,织物的导电性降低但导电耐久性提高;RGO质量分数增加,织物表面沉积的RGO越多,RGO导电层的连续性提高。当RGO、PUA、TMPTA和光引发剂1173的质量比为10∶4∶69∶17,固化时间15 s时印制出来的棉织物的导电性、导电耐久性最佳。
        Reduced graphene oxide(RGO) was used to print on the surface of cotton fabrics to obtain flexible conductive textile materials by UV-curing technology. The mass concentration of RGO, polyurethane acrylate(PUA), photoinitiator 1173 and trimethylolpropane triacrylate(TMPTA) and the curing time on conductive properties of cotton fabric was explored. The conductivity of cotton fabrics were tested, and the morphology of RGO printed on the surface of cotton fabrics was characterized by scanning electron microscopy. The results show that the conductivity of cotton fabrics increases with the increasing of RGO mass concentration. The electrical durability, however, decreases with the increasing of RGO mass concentration. The conductivity of cotton fabrics decreases with the increasing of PUA, photoinitiator 1173 and TMPTA mass concentration, and the electrical durability increases at the same time. The SEM test results show that with the increasing of RGO mass concentration, the amount of RGO coated on the surface of cotton fabrics is increased, and the continuity of RGO conductive layer is enhanced. It is concluded that the optimal UV curable pringting process is the mass ratio of RGO, PUA, TMPTA and photoinitiator 1173 10∶4∶69∶17, curing for 15 s, the printed cotton fabrics obtain excellent electrical conductivity and electrical durability.
引文
[1] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669.
    [2] ALI UMAR M I, YAP C C, AWANG R, et al. Characterization of multilayer graphene prepared from short-time processed graphite oxide flake[J]. Journal of Materials Science: Materials in Electronics, 2012, 24(4): 1282-1286.
    [3] 杨晨啸, 李鹂. 柔性智能纺织品与功能纤维的融合[J]. 纺织学报, 2018, 39(5): 160-169.YANG Chenxiao, LI Li. Integration of soft intelligent textile and functional fiber[J]. Journal of Textile Research, 2018, 39(5): 160-169.
    [4] 赵兵, 祁宁, 徐安长, 等. 石墨烯/蚕丝复合材料研究进展[J]. 纺织学报, 2018, 39(10): 168-174.ZHAO Bing, QI Ning, XU Anchang, et al. Research progress on graphene/silk composite materials[J]. Journal of Textile Research, 2018, 39(10): 168-174.
    [5] 余改丽, 张弘楠, 张娇娇, 等. 高效低阻聚丙烯腈/石墨烯纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2017, 38(2): 26-33.YU Gaili, ZHANG Hongnan, ZHANG Jiaojiao, et al. Preparation and antibacterial property of high-efficiency low-resistance polyacrylonitrile/graphene nanofiber membrane for gas filtration[J]. Journal of Textile Research, 2017, 38(2): 26-33.
    [6] 张克勤, 杜德壮. 石墨烯功能纤维[J]. 纺织学报, 2016, 37(10): 153-157.ZHANG Keqin, DU Dezhuang. Functional fibers based on graphene[J]. Journal of Textile Research, 2016, 37(10): 153-157.
    [7] RODRIGUEZ-LOZANO F J, GARCIA-BERNAL D, AZNAR-CERVANTES S, et al. Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells[J]. Journal of Materials Science: Materials in Medicine, 2014, 25(12): 2731-2741.
    [8] GURUNATHAN S, HAN J W, EPPAKAYALA V, et al. Biocompatibility effects of biologically synthesized graphene in primary mouse embryonic fibroblast cells[J]. Nanoscale Research Letters, 2013, 8(1): 393.
    [9] KARIMI L, YAZDANSHENAS M E, KHAJAVI R, et al. Functional finishing of cotton fabrics using graphene oxide nanosheets decorated with titanium dioxide nanoparticles[J]. Journal of the Textile Institute, 2015,107(9): 1122-1134.
    [10] ZHENG X, YAO L, MEI X, et al. Comparing effects of thermal annealing and chemical reduction treatments on properties of wet-spun graphene fibers[J]. Journal of Materials Science, 2016, 51(21): 1-13.
    [11] CAO J, WANG C. Multifunctional surface modification of silk fabric via graphene oxide repeatedly coating and chemical reduction method[J]. Applied Surface Science, 2017, 405: 380-388.
    [12] MIN X, SHENG D X, ZHONG M Y, et al. The influence of thermal treatment conditions on the structures and electrical conductivities of graphite oxide[J]. New Carbon Materials, 2004, 19(2): 92-96.
    [13] PERES N M R. Colloquium: the transport properties of graphene: an introduction[J]. Physics, 2010, 82(3): 2673-2700.
    [14] NERAL B, ?OSTAR-TURK . Properties of UV-cured pigment prints on textile fabric[J]. Dyes & Pigments, 2006, 68(2): 143-150.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700