用户名: 密码: 验证码:
光催化分解水制备氢气和过氧化氢(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Simultaneous hydrogen and peroxide production by photocatalytic water splitting
  • 作者:王利超 ; 曹爽 ; 郭凯 ; 吴志娇 ; 马智 ; 朴玲钰
  • 英文作者:Lichao Wang;Shuang Cao;Kai Guo;Zhijiao Wu;Zhi Ma;Lingyu Piao;CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology;School of chemical Engineering and Technology, Tianjin University;
  • 关键词:光催化分解水 ; 氢气 ; 过氧化氢 ; 锐钛矿
  • 英文关键词:Photocatalytic water splitting;;Hydrogen;;Hydrogen peroxide;;Anatase TiO_2
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:国家纳米科学中心中国科学院纳米科学卓越创新中心中国科学院纳米标准与检测重点实验室;天津大学化工学院催化科学与工程系;
  • 出版日期:2019-03-05
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(21703046);; the National Key R&D of China(2016YFF0203803 and 2016YFA0200902)~~
  • 语种:英文;
  • 页:CHUA201903021
  • 页数:10
  • CN:03
  • ISSN:21-1601/O6
  • 分类号:245-254
摘要
过氧化氢不仅是一种广泛应用于化学合成、消毒、废水处理及纸浆漂白等领域的高价值化学品,还是一种具有潜力的能源载体.此外,过氧化氢燃料电池因其结构简单而受到广泛关注.蒽醌法是工业生产过氧化氢的传统方法,但是这种方法不仅能耗高,而且生产过程会造成严重的环境问题.因此,通过环保并且低成本的工艺直接合成过氧化氢具有重要研究意义.以太阳能为动力的光催化法生产过氧化氢被认为是最有前景的方法之一.目前,光催化已在制氢、二氧化碳还原和水处理等诸多领域取得了重要进展.但是,利用光催化分解水制备过氧化氢的研究还非常少.尽管通过光催化还原氧气可以制备过氧化氢,但是通过分解水同时制备高价值过氧化氢和氢气更具有吸引力.在本项工作中,我们利用Pt/TiO_2(锐钛矿)光催化剂在没有牺牲剂的条件下实现了高效产氢和过氧化氢,氢气和过氧化氢的生成速率分别达到7410和5096μmol g~(–1) h~(–1) (第一小时),远高于市售的Pt/TiO_2 (锐钛矿)体系和文献报道数值.本文采用X射线光电子能谱(XPS)、电子自旋共振(ESR)和荧光标记法等表征手段研究了Pt/TiO_2上同时生成氢气和过氧化氢的催化机理.XPS测试结果表明, Pt/TiO_2在光照射1 h后, XPS信号发生明显变化.与其他样品相比,物理吸附水和羟基的峰明显增加.因此,我们推测羟基和物理吸附水对过氧化氢的生成具有重要影响.进一步采用电子自旋共振(ESR)和荧光标记法对羟基进行了测量.ESR结果显示,紫外光照60 s即可检测到羟基捕获剂与羟基的结合物5,5-dimethyl-1-pyrroline-N-oxide-OH(DMPO-OH)的特征峰.此外,在体系中加入荧光标记分子对苯二甲酸(TANa)后也可以迅速检测到2-羟基对苯二甲酸(TAOH)在422 nm处明显的荧光信号.因此, ESR和荧光结果均表明所产生的羟基自由基在过氧化氢形成中起着重要作用.上述结果表明,在本体系中氢气和过氧化氢的生成遵循两电子转移过程.与传统全分解水体系生成氢气和氧气相比,两电子转移过程比四电子过程更容易发生.因此,光催化水氧化制过氧化氢是实现大规模生产氢气和过氧化氢的一种很有前景的方法.
        Photocatalytic oxidation of water is a promising method to realize large-scale H_2O_2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO_2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H_2 and H_2 O_2 production. Both H_2 and H_2O_2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g~(–1) h~(–1)(first 1 h) for H_2 and H_2O_2, respectively, which is much higher than that of a commercial Pt/TiO_2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H_2 O_2, compared with the four-electron oxidation of water to O_2.
引文
[1]S.Fukuzumi,Y.M.Lee,W.Nam,Chem.-Eur.J.,2018,245016-5031.
    [2]B.Puértolas,A.K.Hill,T.García,B.Solsona,L.Torrente-Murciano Catal.Today,2015,248,115-127.
    [3]M.N.Young,M.J.Links,S.C.Popat,B.E.Rittmann,C.I.Torres Chem Sus Chem,2016,9,3345-3352.
    [4]K.Mase,M.Yoneda,Y.Yamada,S.Fukuzumi,Nat.Commun.,20167,11470-11476.
    [5]Y.Yamada,M.Yoneda,S.Fukuzumi,Energy Environ.Sci.,2015,81698-1701.
    [6]R.Ciriminna,L.Albanese,F.Meneguzzo,M.Pagliaro,Chem SusChem,2016,9,3374-3381.
    [7]S.Yang,A.Verdaguer-Casadevall,L.Arnarson,L.Silvioli,V.?oli?,RFrydendal,J.Rossmeisl,I.Chorkendorff,I.E.L.Stephens,ACSCatal.,2018,8,4064-4081.
    [8]M.C.Wu,K.C.Hsiao,Y.H.Chang,S.H.Chan,Appl.Surf.Sci.,2018430,407-414.
    [9]D.Ni,H.Shen,H.Li,Y.Ma,T.Zhai,Appl.Surf.Sci.,2017,409241-249.
    [10]F.Li,Q.Gu,Y.Niu,R.Wang,Y.Tong,S.Zhu,H.Zhang,Z.Zhang,XWang,Appl.Surf.Sci.,2017,391,251-258.
    [11]Z.Jiang,M.A.Isaacs,Z.W.Huang,W.Shangguan,Y.Deng,A.F.Lee Chem Cat Chem,2017,9,4268-4274.
    [12]P.Devaraji,W.K.Jo,Chem Cat Chem,2018,10,3813-3823.
    [13]W.Chen,Y.Wang,S.Liu,L.Gao,L.Mao,Z.Fan,W.Shangguan,ZJiang,Appl.Surf.Sci.,2018,445,527-534.
    [14]F.Chen,W.Luo,Y.Mo,H.Yu,B.Cheng,Appl.Surf.Sci.,2018,430448-456.
    [15]S.Wei,S.Ni,X.Xu,Chin.J.Catal.,2018,39,510-516.
    [16]J.Wen,X.Li,W.Liu,Y.Fang,J.Xie,Y.Xu,Chin.J.Catal.,2015,362049-2070.
    [17]L.Pan,J.Zhang,X.Jia,Y.H.Ma,X.Zhang,L.Wang,J.Zou,Chin.JCatal.,2017,38,253-259.
    [18]K.Qi,B.Cheng,J.Yu,W.Ho,Chin.J.Catal.,2017,38,1936-1955.
    [19]C.Zhang,L.Tian,L.Chen,X.Li,K.Lv,K.Deng,Chin.J.Catal.,201839,1373-1383.
    [20]F.Xu,L.Zhang,B.Cheng,J.Yu,ACS Sustainable Chem.Eng.,2018,612291-12298.
    [21]A.Meng,J.Zhang,D.Xu,B.Cheng,J.Yu,Appl.Catal.B,2016,198286-294.
    [22]J.Chen,T.Ding,J.Cai,Y.Wang,M.Wu,H.Zhang,W.Zhao,Y.Tian X.Wang,X.Li,Appl.Surf.Sci.,2018,453,101-109.
    [23]L.Kong,X.Zhang,C.Wang,F.Wan,L.Li,Chin.J.Catal.,2017,382120-2131.
    [24]Q.F.Liu,Q.Zhang,B.R.Liu,S.Li,I.J.Ma,Chin.J.Catal.,2018,39542-548.
    [25]Y.Kofuji,S.Ohkita,Y.Shiraishi,H.Sakamoto,S.Ichikawa,STanaka,T.Hirai,ACS Sustainable Chem.Eng.,2017,5,6478-6485.
    [26]Y.Kofuji,Y.Isobe,Y.Shiraishi,H.Sakamoto,S.Tanaka,S.Ichikawa T.Hirai,J.Am.Chem.Soc.,2016,138,10019-10025.
    [27]A.Naldoni,T.Montini,F.Malara,M.M.Mróz,A.Beltram,T.Virgili C.L.Boldrini,M.Marelli,I.Romero-Oca?a,J.J.Delgado,V.D.Santo P.Fornasiero,ACS Catal.,2017,7,1270-1278.
    [28]R.Li,Y.Weng,X.Zhou,X.Wang,Y.Mi,R.Chong,H.Han,C.Li,Energy Environ.Sci.,2015,8,2377-2382.
    [29]K.Maeda,Chem.Commun.,2013,49,8404-8406.
    [30]V.M.Daskalaki,P.Panagiotopoulou,D.I.Kondarides,Chem.Eng.J.,2011,170,433-439.
    [31]J.Liu,Y.Zhang,L.Lu,G.Wu,W.Chen,Chem.Commun.,2012,48,8826-8828.
    [32]Z.Wu,S.Cao,C.Zhang,L.Piao,Nanotechnology,2017,28,275706/1-275706/12.
    [33]Z.Li,B.Tian,W.Zhen,Y.Wu,G.Lu,Appl.Catal.B,2017,203,408-415.
    [34]M.Liu,L.Piao,W.Lu,S.Ju,C.Zhou,H.Li,W.Wang,Nanoscale,2010,2,1115-1117.
    [35]M.Liu,M.Zhong,H.Li,L.Piao,W.Wang,Chem Plus Chem,2015,80,688-696.
    [36]M.A.Khalily,H.Eren,S.Akbayrak,H.H.Susapto,N.Biyikli,S.?zkar,M.O.Guler,Angew.Chem.Int.Ed.,2016,55,12257-12261.
    [37]D.Wang,Z.P.Liu,W.M.Yang,ACS Catal.,2017,7,2744-2752.
    [38]J.Cai,M.Wu,Y.Wang,H.Zhang,M.Meng,Y.Tian,X.Li,J.Zhang,L.Zheng,J.Gong,Chem,2017,2,877-892.
    [39]T.D.Nguyen-Phan,S.Luo,Z.Liu,A.D.Gamalski,J.Tao,W.Xu,E.A.Stach,D.E.Polyansky,S.D.Senanayake,E.Fujita,J.A.Rodriguez,Chem.Mater.,2015,27,6281-6296.
    [40]Z.Wei,D.Liu,W.Wei,X.Chen,Q.Han,W.Yao,X.Ma,Y.Zhu,ACSAppl.Mater.Interfaces,2017,9,15533-15540.
    [41]J.J.Wang,Z.J.Li,X.B.Li,X.B.Fan,Q.Y.Meng,S.Yu,C.B.Li,J.X.Li,C.H.Tung,L.Z.Wu,Chem Sus Chem,2014,7,1468-1475.
    [42]S.Cao,Y.Chen,H.Wang,J.Chen,X.Shi,H.Li,P.Cheng,X.Liu,M.Liu,L.Piao,Joule,2018,2,549-557.
    [43]T.Tachikawa,M.Fujitsuka,T.Majima,J.Phys.Chem.C,2007,111,5295-5275.
    [44]X.Li,J.Yu,M.Jaroniec,Chem.Soc.Rev.,2016,45,2603-2636.
    [45]K.Sayama,H.Arakawa,J.Chem.Soc.,Faraday Trans.,1997,93,1647-1654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700