用户名: 密码: 验证码:
基于群体平衡理论的竖直管内水合物浆液流动特性模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation of hydrate slurry flow characteristics in vertical pipe based on population balance theory
  • 作者:姚淑鹏 ; 李玉星 ; 王武昌 ; 宋光春 ; 姜凯 ; 施政灼
  • 英文作者:Yao Shupeng;Li Yuxing;Wang Wuchang;Song Guangchun;Jiang Kai;Shi Zhengzhuo;Shandong Key Laboratory of Oil-Gas Storage and Transportation Safety,China University of Petroleum;
  • 关键词:水合物浆液 ; 群体平衡理论 ; 竖直管 ; 数值模拟 ; 动特性
  • 英文关键词:hydrate slurry;;population balance theory;;vertical pipe;;numerical simulation;;?ow characteristics
  • 中文刊名:SYHG
  • 英文刊名:Petrochemical Technology
  • 机构:中国石油大学(华东)山东省油气储运安全省级重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:石油化工
  • 年:2019
  • 期:v.48
  • 基金:山东省自然科学基金面上项目(ZR2017MEE057);; 中央高校基本科研业务费专项资金项目(14CX02207A,17CX06017,17CX05006);; 中国石油大学(华东)研究生创新工程资助项目(YCX2017062)
  • 语种:中文;
  • 页:SYHG201902013
  • 页数:8
  • CN:02
  • ISSN:11-2361/TQ
  • 分类号:87-94
摘要
基于海洋非成岩天然气水合物(简称水合物)颗粒聚集动力学的群体平衡模型,对水合物浆液在竖直管内的流动特性进行了模拟研究,重点模拟研究了水合物浆液体积分数、平均流速对竖直管内水合物浆液流动特性的影响;根据模拟结果,研究了不同工况下流动压降、浓度分布以及水合物粒径分布等流动特性,为水合物开采中举升管内水合物浆液流动特性提供借鉴。实验结果表明,所建模型可较好地模拟水合物浆液在竖直管内的流动状态;较低的浓度和较高的流速有利于保证水合物浆液地竖直管内的流动安全,但不利于输送的经济性。
        In this paper,the ?ow characteristics of hydrate slurry in vertical pipes were simulated using the population balance model based on particle aggregation dynamics of marine non-diagenetic gas hydrate(hereinafter referred to as hydrate),which can better simulate the effect of hydrate volume fraction and the average ?ow velocity of hydrate slurry on the ?ow characteristics of hydrate slurry in the vertical pipes. The flow characteristics of flow pressure drop,concentration distribution and hydrate particle size distribution of under different working conditions were studied according to simulation results,to provide reference for the ?ow characteristics of hydrate slurry in lift pipe during hydrate mining. The experiment results showed that,the model can well simulate the flow state of hydrate slurry in the vertical pipes,and lower concentration and higher flow rate were beneficial to ensure the flow safety of the hydrate slurry in the vertical pipes,but were not conducive to the economy of transportation.
引文
[1]宋广喜,雷怀玉,王柏苍,等.国内外天然气水合物发展现状与思考[J].国际石油经济,2013,21(11):69-76.
    [2]Boswell R,Collett T S.Current perspectives on gas hydrate resources[J].Energy Environ Sci,2011,4(4):1206-1215.
    [3]许红,黄君权,夏斌,等.最新国际天然气水合物研究现状及资源潜力评估(下)[J].天然气工业,2005,25(6):18-23.
    [4]周守为,陈伟,李清平.深水浅层天然气水合物固态流化绿色开采技术[J].中国海上油气,2014,26(5):1-7.
    [5]周守为,陈伟,李清平,等.深水浅层非成岩天然气水合物固态流化试采技术研究及进展[J].中国海上油气,2017,29(4):1-8.
    [6]Fatnes E D.Numerical simulations of the flow and plugging behaviour of hydrate particles[D].Bergen:University of Bergen,2010.
    [7]Balakin B V,Hoffmann A C,Kosinski P.Experimental study and computational fluid dynamics modeling of deposition of hydrate particles in a pipeline with turbulent water flow[J].Chem Eng Sci,2011,66(4):755-765.
    [8]Balakin B V,Hoffmann A C,Kosinski P.Population balance model for nucleation,growth,aggregation,and breakage of hydrate particles in turbulent flow[J].AIChE J,2010,56(8):2052-2062.
    [9]江国业,王晓娅,孙鹏.基于正交试验设计的水合物浆液流动特性数值模拟[J].科技导报,2014,32(13):23-27.
    [10]宋光春,李玉星,王武昌,等.基于群体平衡理论的管内水合物浆流动特性数值模拟[J].化工进展,2018,37(2):561-568.
    [11]宋光春,李玉星,王武昌,等.基于群体平衡理论的水合物聚集动力学模型[J].化工进展,2018,37(1):80-87.
    [12]周守为,赵金洲,李清平,等.全球首次海洋天然气水合物固态流化试采工程参数优化设计[J].天然气工业,2017,37(9):1-14.
    [13]刘艳军,唐孝蓉,胡坤.天然气水合物浆体分解对其在垂直管中流动特性影响的研究[J].化学通报,2018,81(3):267-273.
    [14]Ding J,Gidaspow D.A bubbling fluidization model using kinetic theory of granular flow[J].AIChE J,1990,36(4):523-538.
    [15]王继红.冰浆的管道输送热流动特性[D].大连:大连理工大学,2013.
    [16]Pabst W.Fundamental considerations on suspension rheology[J].P R Soc A,2004,48(1):6-13.
    [17]赵鹏飞,王武昌,李玉星,等.管道内水合物浆流动的数值模型[J].油气储运,2016,35(3):272-277.
    [18]Hulburt H M,Katz S.Some problems in particle technology[J].Chem Eng Sci,1964,19(8):555-574.
    [19]Camp T R,Stein P C.Velocity gradients and internal work in fluid motion[J].J Bsn Soc Civ Eng,1943,30(4):219-237.
    [20]Saffman P G,Turner J S.On the collision of drops in turbulent clouds[J].J Fluid Mech,1956,1(1):16-30.
    [21]Abrahamson J.Collision rates of small particles in a vigorously turbulent fluid[J].Chem Eng Sci,1975,30(11):1371-1379.
    [22]van de Ven T G M,Mason S G.The microrheology of colloidal dispersionsⅦ.Orthokinetic doublet formation of spheres[J].Colloid Polym Sci,1977,255(5):468-479.
    [23]Song Guangchun,Li Yuxing,Wang Wuchang,et al.Investigation of hydrate plugging in natural gas+diesel oil+water systems using a high-pressure flow loop[J].Chem Eng Sci,2017,158(2):480-489.
    [24]And X L,Logan B E.Collision frequencies between fractal aggregates and small particles in a turbulently sheared fluid[J].Environ Sci Technol,1997,31(4):1237-1242.
    [25]陈鹏,刘福旺,李玉星,等.水合物浆液流动特性数值模拟[J].油气储运,2014,33(2):160-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700