用户名: 密码: 验证码:
凹凸棒石/g-C_3N_4-AgFeO_2复合材料制备及其光催化性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and Photocatalytic Performance of Attapulgite/g-C_3N_4-AgFeO_2 Composites
  • 作者:谢登裕 ; 蒋亿 ; 纪媛媛 ; 殷明慧 ; 盛振环 ; 赵伟 ; 殷竟洲 ; 李乔琦 ; 仲慧 ; 张莉莉
  • 英文作者:XIE Deng-Yu;JIANG Yi;JI Yuan-Yuan;YING Ming-Hui;SHENG Zhen-Huan;ZHAO Wei;YIN Jing-Zhou;LI Qiao-Qi;ZHONG Hui;ZHANG Li-Li;Jiangsu Key Laboratory for Low-Dimension Materials, Jiangsu Environmental Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University;
  • 关键词:物理化学 ; 无机非金属材料 ; 可见光催化 ; 凹凸棒石 ; 类石墨相氮化碳 ; 铁酸银
  • 英文关键词:physical chemistry;;inorganic nonmetallic materials;;visible light photocatalysis;;attapulgite;;g-C3N4;;AgFeO2
  • 中文刊名:WJHX
  • 英文刊名:Chinese Journal of Inorganic Chemistry
  • 机构:淮阴师范学院化学化工学院江苏省低维材料化学重点实验江苏省环境功能材料工程实验室;
  • 出版日期:2019-02-10
  • 出版单位:无机化学学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金(No.51472101);; 江苏省自然科学基金(No.BK20161305);; 江苏省六大人才高峰(No.JY-31);; 江苏省高校大学生创新计划(No.201710323004Z)资助项目
  • 语种:中文;
  • 页:WJHX201902007
  • 页数:9
  • CN:02
  • ISSN:32-1185/O6
  • 分类号:62-70
摘要
以凹凸棒石(简称凹土,ATP)为基体,通过原位化学法一步直接合成g-C_3N_4薄层材料,并将其有效固载于凹土表面(ATP/gC_3N_4),再通过原位沉淀法引入不同比例AgFeO_2纳米颗粒,构筑系列兼具磁分离特性和高效光催化活性的ATP/g-C_3N_4-AgFeO_2-Y复合光催化剂(Y=wATP/g-C_3N_4/(wATP/g-C_3N_4+wAg FeO_2)×100%,表示ATP/g-C_3N_4在ATP/g-C_3N_4-AgFeO_2复合材料中所占的质量百分数)。采用XRD、SEM、BET、UV-Vis、PL和ICP表征其结构和物化性能,以酸性红G(ARG)为目标降解物,研究其光催化性能。研究发现:通过形成Si-O-C键,g-C_3N_4薄层被均匀固定在凹土表面;AgFeO_2纳米颗粒均匀沉积于ATP/g-C_3N_4表面并形成Z型异质结,ATP/gC_3N_4-AgFeO_2-Y具有比ATP/g-C_3N_4和AgFeO_2更优异的可见光光催化性能,且随着ATP/g-C_3N_4含量的增大呈先升高而后下降的趋势;当Y=57%时复合材料的性能最佳,ATP/g-C_3N_4-AgFeO_2-57%对20 mg·L-1酸性红G的降解率可达97.4%,循环4次使用后,降解率仍保持94.2%。通过自由基捕获实验研究了光催化反应机理,发现·O2-是光催化过程的主要活性物种。
        Attapulgite(ATP) was chosen as the matrix of g-C_3N_4 thin layer and Ag FeO_2 nanoparticles to fabricate a series of ATP/g-C_3N_4-Ag FeO_2-Y composites presenting both magnetic separation and high photocatalytic activity by in-situ chemical method, where Y stands for the mass percentage of ATP/g-C_3N_4 in the composite(Y=wATP/g-C_3N_4/(wATP/g-C_3N_4+wAg FeO_2) ×100%). XRD, SEM, BET, UV-Vis, PL and ICP were used to characterize the structure and physicochemical properties of the products. Photodegradation of acid red G(ARG) was chosen as target to investigate the photocatalytic property of all the products. It was found that g-C_3N_4 thin layer was uniformly fixed on the surface of the ATP by forming a Si-O-C bond, while the Ag FeO_2 nanoparticles were deposited on the surface of ATP/g-C_3N_4 uniformly to form a type Z heterojunction structure. ATP/g-C_3N_4-Ag FeO_2-Y presented higher visible light photocatalytic performance than that of ATP/g-C_3N_4 and Ag FeO_2. The photocatalytic activity of ATP/g-C_3N_4-Ag FeO_2-Y changed with the content of ATP/g-C_3N_4, and when Y=57%, ATP/g-C_3N_4-Ag FeO_2-57% shows the best photocatalytic activity. The degradation rate of 20 mg·L-1acid red G was up to 97.4%, and it remained at 94.2%after 4 cycles when catalyzed by ATP/g-C_3N_4-Ag FeO_2-57%. The photocatalytic mechanism was studied by free radical trapping experiments. It was found that ·O2-is the main active species in the photocatalytic process.
引文
[1] YAN Shi-Cheng(闫世成), ZOU Zhi-Gang(邹志刚). Materials China(中国材料进展), 2015,34(9):652-658
    [2] ZHU Yong-Fa(朱永法), YAO Wen-Qing(姚文清), ZONG Rui-Long(宗瑞隆), et al. Photocatalysis-Environmental Purification and Application of Green Energy:Vol.2(光催化-环境净化与绿色能源应用探索:中册). Beijing:Chemical Industry Press, 2014.
    [3] Ong W J, Tan L L, Ng Y H, et al. Chem. Rev., 2016,116:7159-7329
    [4] Wang X, Liang Y H, An W J, et al. Appl. Catal. B, 2017,219:53-62
    [5] Wang H, Liang Y H, Liu L, et al. J. Hazard. Mater., 2018,344:369-380
    [6] Liang S J, Xia Y Z, Zhu S Y. Appl. Surf. Sci., 2015,358:304-312
    [7] Ge L, Han C C, Liu J, et al. Appl. Catal. A, 2011,409:215-222
    [8] Zhang M, Bai X J, Liu D, et al. Appl. Catal. B, 2015,164:77-81
    [9] Zhang L G, Chen X F, Guan J, et al. Mater. Res. Bull.,2013,48:3485-3491
    [10]LI Na(李娜), WANG Ming(王茗), ZHAO Bei-Ping(赵北平),et al. Chinese J. Inorg. Chem.(无机化学学报), 2016,32(6):1033-1040
    [11]Zhao W, Guo Y, Wang S M, et al. Appl. Catal. B, 2015,165:335-343
    [12]Ding J, Liu Q Q,Zhang Z Y, et al. Appl. Catal. B, 2015,165:511-518
    [13]Wang G Y, Zhang Y Z, You C Y, et al. Infrared Phys. Tech.,2017,88:149-173
    [14]Chung J H, Matsuda M, Lee S H, et al. Phys. Rev. Lett.,2005,95(24):247204
    [15]XIONG Zhao-Xian(熊兆贤). Introduction to Material Physics:Vol.1(材料物理导论:第1册). Beijing:Science Press, 2012.
    [16]Fang Y X, Ma Y W, Wang X C. Chin. J. Catal., 2018,39(3):438-445
    [17]Hao X Q, Zhou J, Cui Z W, et al. Appl. Catal. B, 2018,229:41-51
    [18]Tang D D, Zhang G G. Appl. Surf. Sci., 2017,391:415-422
    [19]MENG Yue(孟跃), XIA Sheng-Jie(夏盛杰), XUE Ji-Long(薛继龙), et al. Chinese J. Inorg. Chem.(无机化学学报), 2018,34(9):1632-1640
    [20]Xia S J, Zhou X B, Shi W. J. Mol. Catal. A:Chem., 2014,392:270-277
    [21]LIU Li-Yan(刘丽艳), SUN Zhi-Rou(孙至柔), YE Wen-Bo(叶文博),et al. Chem. Ind. Eng. Prog.(化工进展), 2016,35:3663-3668
    [22]WAN Jian-Feng(万建风), HU De-Sheng(胡德圣), LU PengHui(卢朋辉), et al. J. Inorg. Mater.(无机材料学报), 2016,31:845-849
    [23]Xu Y S, Zhang L L, Xie D Y, et al. Appl. Surf. Sci., 2018,440:170-176
    [24]Liu C Y, Huang H G, Du X, et al. J. Phys. Chem. C, 2015,119(30):17156-17165
    [25]Li Z J, Wang J H, Zhu K X, et al. Mater. Lett., 2015,145(4):167-170
    [26]Yang J, Li D, Wang X. J. Solid State Chem., 2002,165(1):193-198
    [27]Jin J, Liang Q, Ding C Y, et al. J. Alloys Compd., 2017,691(1):763-771

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700