用户名: 密码: 验证码:
杂环芳纶表面ZnO纳米界面相的构筑及其界面强化作用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of ZnO Nano-Interphase on the Surface Bonding Behavior of Aramid Fibers
  • 作者:马立翔 ; 董杰 ; 张晶威 ; 滕翠青
  • 英文作者:MA Li-xiang;DONG Jie;ZHANG Jing-wei;TENG Cui-qing;State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,College of Material Science and Engineering,Donghua University;
  • 关键词:芳纶 ; 氧化锌纳米界面相 ; 界面剪切强度 ; 抗紫外性能
  • 英文关键词:aramid fiber;;ZnO nano-interphase;;interfacial shear strength;;UV-resistance
  • 中文刊名:HCXW
  • 英文刊名:Synthetic Fiber in China
  • 机构:纤维改性国家重点实验室东华大学材料科学与工程学院;
  • 出版日期:2019-02-20 09:01
  • 出版单位:合成纤维
  • 年:2019
  • 期:v.48;No.360
  • 基金:中国纺织工业联合会应用基础研究项目(J201803)
  • 语种:中文;
  • 页:HCXW201902007
  • 页数:7
  • CN:02
  • ISSN:31-1361/TQ
  • 分类号:20-26
摘要
为了改善杂环芳纶(F3)与环氧树脂黏结性差以及不耐紫外辐射的缺点,首先对纤维进行功能化预处理,然后通过溶胶-凝胶法和水热法分别在芳纶表面生长了氧化锌纳米颗粒和氧化锌纳米线界面层。采用X成、形貌、与环氧树脂的黏结性以及抗紫外性能进行了研究。结果表明:纳米颗粒状和纳米线形态的ZnO纳米界面相能够显著提高纤维与树脂基体的黏结性能,与未处理的纤维相比,单纤维复合材料的界面剪切强度分别提高了14.1%和27.0%;同时ZnO的破坏,经过168 h紫外辐射试验后,纤维强度保持率从79.1%提高到96.7%。
        To improve the interfacial adhesion of aramid(F3) fibers with epoxy resin and UV irradiation resistance,the fibers were firstly pretreated,and then ZnO nanoparticles and nanowires were introduced on the surface of aramid fibers by the sol-gel and hydrothermal process.The surface chemical composition,morphology,adhesion behavior with epoxy resin and UV resistance of fibers were characterized by X-ray photoelectron spectroscopy,field emission scanning electron microscopy,micro-debonding test and UV irradiation.Results show that the ZnO nanoparticle and nanowire interphases can significantly improve the bonding abilities of fibers with the resin matrix,and the interfacial shear strength of single fiber composites increases by 14.1% and 27.0% compared with that of the untreated one,respectively.Moreover,the ZnO interphase effectively shields the damage to chemical structure of fibers surface from UV light and the strength retention of the aramid fiber increases from 79.1% to 96.7% after 168 h of UV irradiation.
引文
[1]SA R,YAN Y,WEI Z,et al.Surface modification of aramid fibers by bio-inspired poly(dopamine)and epoxy functionalized silane grafting[J].ACS Applied Materials&Interfaces,2014,6(23):21730-21738.
    [2]ZHANG S H,LIANG H G,CUI H,et al.Comparison of F-12 aramid fiber with domestic aramid fiber III on surface feature[J].Applied Surface Science,2010,256(7):2104-2109.
    [3]LEAL A A,DEITZEL J M,MCKNIGHT S H,et al.Interfacial behavior of high performance organic fibers[J].Polymer,2009,50(5):1228-1235.
    [4]PATTERSON B A,SODANO H A.Enhanced Interfacial strength and uv shielding of aramid fiber composites through zno nanoparticle sizing[J].ACS Applied Materials&Interfaces,2016,8(49):33963-33971.
    [5]BROWN J,CHAPPELL P,MATHYS Z.Plasma surface modification of advanced organic fibres[J].Journal of Materials Science,1991,26(15):4172-4178.
    [6]SHEU G,SHYU S.Surface properties and interfacial adhesion studies of aramid fibres modified by gas plasmas[J].Composites Science and Technology,1994,52(4):489-497.
    [7]BROWN J,MATHYS Z.Plasma surface modification of advanced organic fibres:Part V Effects on the mechanical properties of aramid/phenolic composites[J].Journal of Materials Science,1997,32(10):2599-2604.
    [8]LI G,ZHANG C,WANG Y,et al.Interface correlation and toughness matching of phosphoric acid functionalized Kevlar fiber and epoxy matrix for filament winding composites[J].Composites Science and Technology,2008,68(15):3208-3214.
    [9]LIN J.Effect of surface modification by bromination and metalation on Kevlar fibre-epoxy adhesion[J].European Polymer Journal,2002,38(1):79-86.
    [10]LIU T,ZHENG Y,HU J.Surface modification of aramid fibers with new chemical method for improving interfacial bonding strength with epoxy resin[J].Journal of Applied Polymer Science,2010,118(5):2541-2552.
    [11]EHLERT G J,LIN Y,SODANO H A.Carboxyl functionalization of carbon fibers through a grafting reaction that preserves fiber tensile strength[J].Carbon,2011,49(13):4246-4255.
    [12]ZHANG Y H,HUANG Y D,LIU L,et al.Effects ofγ-ray radiation grafting on aramid fibers and its composites[J].Applied Surface Science,2008,254(10):3153-3161.
    [13]GHOSH L,FADHILAH M H,KINOSHITA H,et al.Synergistic effect of hyperthermal atomic oxygen beam and vacuum ultraviolet radiation exposures on the mechanical degradation of high-modulus aramid fibers[J].Polymer,2006,47(19):6836-6842.
    [14]KOWBEL W,BRUCE C,WITHERS J,et al.Effect of carbon fabric whiskerization on mechanical properties of C-C composites[J].Composites Part A,1997,28(12):993-1000.
    [15]BEKYAROVA E,THOSTENSON E,YU A,et al.Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J].Langmuir,2007,23(7):3970-3974.
    [16]THOSTENSON E,LI W,WANG D,et al.Carbon nanotube/carbon fiber hybrid multiscale composites[J].Journal of Applied Physics,2002,91(9):6034-6037.
    [17]LIN Y,EHLERT G,SODANO H A.Increased interface strength in carbon fiber composites through a zno nanowire interphase[J].Advanced Functional Materials,2009,19(16):2654-2660.
    [18]LEE J U,PARK B,KIM B,et al.Electrophoretic deposition of aramid nanofibers on carbon fibers for highly enhanced interfacial adhesion at low content[J].Composites Part A,2016,84:482-489.
    [19]EHLERT G J,GALAN U,SODANO H A.Role of surface chemistry in adhesion between zno nanowires and carbon fibers in hybrid composites[J].ACS Applied Material&Interfaces,2013,5:635-645.
    [20]MALAKOOTI M H,PATTERSON B A,HWANG H,et al.ZnOnanowire interfaces for high strength multifunctional composites with embedded energy harvesting[J].Energy&Environmental Science,2016,9:634-643.
    [21]WANG J,SUN X,YANG Y,et al.Hydrothermally grown oriented ZnO nanorod arrays for gas sensing applications[J].Nanotechnology,2006,17:4995-4998.
    [22]ANTON S R,SODANO H A.A review of power harvesting using piezoelectric materials(2003-2006)[R].Smart Materials&Structures,2007,16(3):R1-R21.
    [23]LI Y,FU S,MAI Y.Preparation and characterization of transparent ZnO/epoxy nanocomposites with high-UV shielding efficiency[J].Polymer,2006,47(6):2127-2132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700