用户名: 密码: 验证码:
膜态沸腾球体水下运动减阻特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Drag Reduction Characteristics of a Film Boiling Sphere Moving Underwater
  • 作者:李佳川 ; 魏英杰 ; 王聪 ; 夏维学
  • 英文作者:LI Jiachuan;WEI Yingjie;WANG Cong;XIA Weixue;School of Astronautics,Harbin Institute of Technology;
  • 关键词:膜态沸腾球体 ; 蒸汽膜 ; 绕流特性 ; 水下运动 ; 减阻特性
  • 英文关键词:film boiling sphere;;vapor film;;flow characteristic;;underwater moving;;drag reduction characteristic
  • 中文刊名:BIGO
  • 英文刊名:Acta Armamentarii
  • 机构:哈尔滨工业大学航天学院;
  • 出版日期:2019-02-15
  • 出版单位:兵工学报
  • 年:2019
  • 期:v.40;No.263
  • 基金:国家自然科学基金项目(11672094)
  • 语种:中文;
  • 页:BIGO201902014
  • 页数:8
  • CN:02
  • ISSN:11-2176/TJ
  • 分类号:124-131
摘要
为揭示膜态沸腾球体水下运动减阻机理,基于计算流体力学方法,采用Mixture多相流模型,耦合蒸发-冷凝相变模型,对亚临界雷诺数范围内的膜态沸腾球体绕流减阻特性进行数值仿真,得到的阻力系数与文献[11]实验结果具有较好的一致性。对比分析了普通球体与膜态沸腾球体的绕流特性,研究了雷诺数对膜态沸腾球体绕流特性的影响,分析了膜态沸腾球体绕流运动减阻机理。仿真结果表明:膜态沸腾球体蒸汽膜的存在使球体壁面的无滑移边界条件转化为蒸汽膜的滑移边界条件,减小了壁面对流体的粘滞作用,使流动分离点向尾部移动,减小了球体绕流阻力;蒸汽会在球体尾部发生堆积,随着雷诺数的增大,堆积位置向后移动,阻力系数变小,尾部流动更趋于流线型。
        In order to reveal the drag reduction mechanism of a film boiling sphere moving underwater,mixture multiphase flow model and evaporation-condensation model are used to simulate the flow around the film boiling sphere within the range of subcritical Reynolds number based on computational fluid dynamics method. The numerically simulated resistance coefficients results are in good agreement with the experimental results in Ref. [11]. The flow characteristics around the ordinary sphere and the film boiling sphere are compared. The effect of Reynolds number on the flow characteristics around the film boiling sphere is investigated,and the drag reduction mechanism of the flow around the film boiling sphere is analyzed. The numerical results show that the no-slip boundary condition of sphere surface can be changed into the slip boundary condition of vapor film due to the presence of vapor film of film boiling sphere. It reduces the viscous force exerted to the fluid by the wall,and makes the flow separation point move to the tail of sphere and reduces the resistance of the sphere. The steam accumulates in the tail of sphere. With the increase in Reynolds number,the accumulation position moves backward,the drag coefficient becomes smaller,and the flow around the tail tends to streamline.
引文
[1] YANG S Q,DOU G. Turbulent drag reduction with polymer addi-tive in rough pipes[J]. Journal of Fluid Mechanics,2010,642:279-294.
    [2] CECCIO S L. Friction drag reduction of external flows with bub-bles and gas injection[J]. Annual Review of Fluid Mechanics,2010,42:183-203.
    [3]金大桥,王聪,曹伟,等.通气超空泡水下射弹数值模拟及试验研究[J].兵工学报,2011,32(10):1184-1188.JIN D Q,WANG C,CAO W,et al. Numerical simulation and exper-imental study of ventilated supercavity of underwater projectile[J].Acta Armamentarii,2011,32(10):1184-1188.(in Chinese)
    [4] CUI Z,FAN J M,PARK A H. Drag coefficients for a settlingsphere with microbubble drag reduction effects[J]. Powder Tech-nology,2003,138(2/3):132-134.
    [5] QIN S J,CHU N,YAO Y,et al. Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection[J].Physics of Fluids,2017,29(3):037103.
    [6] MCHALE G,NEWTON M I,SHIRTCLIFFE N J. Immersed su-perhydrophobic surfaces:gas exchange,slip and drag reductionproperties[J]. Soft Matter,2010,6(4):714-719.
    [7] ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. AnnualReview of Fluid Mechanics,2010,42:89-109.
    [8] JETLY A,VAKARELSKI I U,THORODDSEN S T. Drag crisismoderation by thin air layers sustained on superhydrophobicspheres falling in water[J]. Soft Matter,2018,14(9):1608-1613.
    [9] SARANADHI D,CHEN D Y,KLEINGARTNER J A. Sustaineddrag reduction in a turbulent flow using a low-temperature Leiden-frost surface[J]. Science Advances,2016,2(10):e1600686.
    [10] VAKARELSKI I U,MARSTON J O,CHAN D Y C,et al. Dragreduction by Leidenfrost vapor layers[J]. Physical Review Let-ters,2011,106(21):214501.
    [11] VAKARELSKI I U,CHAN D Y C,THORODDSEN S T. Lei-denfrost vapor layer moderation of the drag crisis and trajectoriesof superhydrophobic and hydrophilic spheres falling in water[J].Soft Matter,2014,10(31):5662-5668.
    [12] VAKARELSKI I U,BERRY J D,CHAN D Y C. Leidenfrost va-por layers reduce drag without the crisis in high viscosity liquids[J]. Physical Review Letters,2016,117(11):114503.
    [13]李佳川,魏英杰,王聪,等.加热球体入水空泡实验研究[J].物理学报,2016,65(20):204703.LI J C,WEI Y J,WANG C,et al. Water-entry cavity of heatedspheres[J]. Acta Physica Sinica,2016,65(20):204703.(inChinese)
    [14] GRUNCELL R K,SANDHAM N D,MCHALE G. Simulations oflaminar flow past a superhydrophobic sphere with drag reductionand separation delay[J]. Physics of Fluids,2013,25(4):043601.
    [15] VAKARELSKI I U,PATANKAR N A,MARSTON J O,et al.Stabilization of Leidenfrost vapor layer by textured superhydropho-bic surfaces[J]. Nature,2012,489(7415):274-277.
    [16] ACHENBACH E. Experiments on the flow past spheres at veryhigh Reynolds numbers[J]. Journal of Fluid Mechanics,1972,54(3):565-575.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700