用户名: 密码: 验证码:
辽东山区典型人工针叶林土壤细菌群落多样性特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Soil bacterial community structure characteristics in coniferous forests of Montane Regions of eastern Liaoning Province,China
  • 作者:邓娇娇 ; 周永斌 ; 殷有 ; 魏亚伟 ; 秦胜金 ; 朱文旭
  • 英文作者:DENG Jiaojiao;ZHOU Yongbin;YIN You;WEI Yawei;QIN Shengjin;ZHU Wenxu;College of Foresty,Shenyang Agricultural University;Research Station of Liaohe-River Plain Forest Ecosystem,Chinese Forest Ecosystem Research Network;
  • 关键词:辽东山区 ; 针叶林 ; 高通量测序 ; 细菌群落结构
  • 英文关键词:eastern Liaoning Province;;coniferous forest;;high-throughput sequencing;;bacterial community structure
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:沈阳农业大学林学院;中国森林生态系统监测网络辽宁辽河平原森林生态系统定位研究站;
  • 出版日期:2018-11-05 09:06
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:辽宁省博士启动基金(20170520064);; 国家科技支撑计划(2015BAD07B030103);; 辽宁省宜林地营林决策平台构建及示范项目(201304216)
  • 语种:中文;
  • 页:STXB201903024
  • 页数:12
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:244-255
摘要
为揭示不同人工林树种对土壤养分和土壤微生物群落的影响,采用Illumina MiSeq高通量测序和OTU分析法比较辽东山区白石砬子自然保护区落叶松人工林(LGe)和红松人工林(PKe),以及辽宁省森林经营研究所实验林场落叶松人工林(LGd)和红松人工林(PKd)土壤细菌群落结构的差异,同时测定土壤理化性质,探讨土壤细菌群落结构、树种和土壤环境因子的相关性。研究结果表明:(1) LGe和PKe土壤全碳、全氮和碱解氮的含量无显著差异,LGd显著高于PKd。(2)从群落组成来看,该地区落叶松和红松人工林中土壤主要由34个门类群的菌群组成,优势菌群包括变形菌门、放线菌门、酸杆菌门、绿弯菌门、疣微菌门和芽单胞菌门。(3)从群落结构来看,LGe和PKe土壤细菌的多样性和丰富度指数无显著差异,PKd的多样性指数显著极高于LGd,丰富度指数无显著差异,且Metastats分析结果表明,较LGd和PKd相比,LGe和PKe在门水平和属水平上显著差异的个数较少,表现为趋同性。(4)优势细菌类群相对丰度和土壤理化性质的RDA和相关性分析表明,土壤p H、全氮、碱解氮的含量以及C/N是本区针叶林细菌群落结构的主要影响因子。综合分析表明,在保护区选择单一树种落叶松或红松造林对改善土壤养分及优化微土壤细菌群落结构无显著差异,而在实验林场选择落叶松更有利于提高土壤肥力。
        To determine the effect of different coniferous plantations on the soil characteristics and diversity and community structure of soil microorganisms,Illumina MiSeq high-throughput sequencing and OTU analysis were used to assess the structure of the microbial community in Larix gmelinii and Pinus koraiensis forests in the Baishilazi Nature Reserve( LGe,PKe) and the experimental forest farm of Liaoning Institute of Forest Management( LGd,PKd) in the montane region of eastern Liaoning Province,China. Soil physiochemical properties were determined to analyze the relationship among bacterial community structures,forest types,and soil environmental factors. Ours results showed that( 1) soil total carbon,total nitrogen,and available nitrogen contents in LGe was not significantly different from Pke,and LGd was significantly( P<0.01) higher than PKd;( 2) 34 different bacterial phyla were identified in the soil of L. olgensis and P. koraiensis forests in this area. The dominant bacterial groups were Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi,Verrucomicrobia,and Gemmatimonadetes;( 3) structurally,there was no significant difference in diversity and richness indexes between LGe and PKe. The diversity indexes of the soil microbes in LGd were significantly higher than that in PKd,and there was no remarkable difference in richness indexes between them. The results of the Metastats analysis showed that the number of significantly different phyla and genera between LGe and PKe were relatively few,exhibiting a converging trend,than that of LGd and PKd;( 4) redundant and correlation analyses indicated that soil pH,TN,AN content,and C/N were the main factors that correlated with microbial community structure of coniferous forests in this region. We concluded that planting L. gmelinii had no significant difference in increasing soil nutrients and improving bacterial community structure with P. koraiensis in Baishilazi Nature Reserve. However,L. gmelinii was remarkably more conducive to soil nutrient accumulation than P. koraiensis in the experimental forest farm.
引文
[1]Zhong W H,Gu T,Wang W,Zhang B,Lin X G,Huang Q R,Shen W S.The effects of mineral fertilizer and organic manure on soil microbial community and diversity.Plant and Soil,2010,326(1/2):511-522.
    [2]Pankhurst C E,Ophel-Keller K,Doube B M,Gupta V V S R.Biodiversity of soil microbial communities in agricultural systems.Biodiversity&Conservation,1996,5(2):197-209.
    [3]Angeloni N L,Jankowski K J,Tuchman N C,Kelly J J.Effects of an invasive cattail species(Typha×glauca)on sediment nitrogen and microbial community composition in a freshwater wetland.FEMS Microbiology Letters,2006,263(1):86-92.
    [4]Averill C,Hawkes C V.Ectomycorrhizal fungi slow soil carbon cycling.Ecology Letters,2016,19(8):937-947.
    [5]K9gel-knabner I.The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter.Soil Biology and Biochemistry,2002,34(2):139-162.
    [6]Felske A,Wolterink A,van Lis R,de Vos W M,Akkermans A D L.Response of a soil bacterial community to grassland succession as monitored by 16S rRNA levels of the predominant ribotypes.Applied and Environmental Microbiology,2000,66(9):3998-4003.
    [7]Kuramae E E,Gamper H A,Yergeau E,Piceno Y M,Brodie E L,De Santis T Z,Andersen G L,van Veen J A,Kowalchuk G A.Microbial secondary succession in a chronosequence of chalk grasslands.The ISME Journal,2010,4(5):711-715.
    [8]Kennedy A C,Smith K L.Soil microbial diversity and the sustainability of agricultural soils.Plant and Soil,1995,170(1):75-86.
    [9]Guo X P,Chen H Y H,Meng M J,Biswas S R,Ye L X,Zhang J C.Effects of land use change on the composition of soil microbial communities in a managed subtropical forest.Forest Ecology and Management,2016,373:93-99.
    [10]Wang Q K,He T X,Wang S L,Liu L.Carbon input manipulation affects soil respiration and microbial community composition in a subtropical coniferous forest.Agricultural and Forest Meteorology,2013,178-179:152-160.
    [11]Jangid K,Williams M A,Franzluebbers A J,Schmidt T M,Coleman D C,Whitman W B.Land-use history has a stronger impact on soil microbial community composition than aboveground vegetation and soil properties.Soil Biology and Biochemistry,2011,43(10):2184-2193.
    [12]Bach L H,Grytnes J A,Halvorsen R,Ohlson M.Tree influence on soil microbial community structure.Soil Biology and Biochemistry,2010,42(11):1934-1943.
    [13]Balser T C,Firestone M K.Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest.Biogeochemistry,2005,73(2):395-415.
    [14]Liang C,Fujinuma R,Wei L P,Balser T C.Tree species-specific effects on soil microbial residues in an upper Michigan old-growth forest system.Forestry:An International Journal of Forest Research,2007,80(1):65-72.
    [15]Kao-Kniffin J,Balser T C.Soil fertility and the impact of exotic invasion on microbial communities in Hawaiian forests.Microbial Ecology,2008,56(1):55-63.
    [16]崔芳芳,刘增文,付刚,段而军,高文俊.秦岭山区几种典型森林的土壤微生物特征及其对人为干扰的响应.西北林学院学报,2008,23(2):129-134.
    [17]乔沙沙,周永娜,刘晋仙,景炬辉,贾彤,李毳,杨欣,柴宝峰.关帝山针叶林土壤细菌群落结构特征.林业科学,2017,53(2):89-99.
    [18]Fadrosh D W,Ma B,Gajer P,Sengamalay N,Ott S,Brotman R M,Ravel J.An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina Mi Seq platform.Microbiome,2014,2(1):6.
    [19]White J R,Nagarajan N,Pop M.Statistical methods for detecting differentially abundant features in clinical metagenomic samples.PLoSComputational Biology,2009,5(4):e1000352.
    [20]杨万勤,王开运.森林土壤酶的研究进展.林业科学,2004,40(2):152-159.
    [21]Pang X Y,Bao W K.Effect of substituting plantation species for native shrubs on the water-holding characteristics of the forest floor on the eastern Tibetan plateau.Journal of Resources and Ecology,2011,2(3):217-224.
    [22]Carney K M,Matson P A.Plant communities,soil microorganisms,and soil carbon cycling:does altering the world belowground matter to ecosystem functioning.Ecosystems,2005,8(8):928-940.
    [23]Donnison L M,Griffith G S,Bardgett R D.Determinants of fungal growth and activity in botanically diverse haymeadows:effects of litter type and fertilizer additions.Soil Biology and Biochemistry,2000,32(2):289-294.
    [24]Shen C C,Xiong J B,Zhang H Y,Feng Y Z,Lin X G,Li X Y,Liang W J,Chu H Y.Soil p H drives the spatial distribution of bacterial communities along elevation on Changbai Mountain.Soil Biology and Biochemistry,2013,57:204-211.
    [25]Hartman W H,Richardson C J,Vilgalys R,Bruland G L.Environmental and anthropogenic controls over bacterial communities in wetland soils.Proceedings of the National Academy of Sciences of the United States of America,2008,105(46):17842-17847.
    [26]Molin J,Molin S.CASE:complex adaptive systems ecology//Jones J G,ed.Advances in Microbial Ecology.Boston,MA:Springer,1997:27-79.
    [27]Wall D H,Virginia R A.Controls on soil biodiversity:insights from extreme environments.Applied Soil Ecology,1999,13(2):137-150.
    [28]Kirk J L,Beaudette L A,Hart M,Moutoglis P,Klironomos J N,Lee H,Trevors J T.Methods of studying soil microbial diversity.Journal of Microbiological Methods,2004,58(2):169-188.
    [29]Timonen S,Finlay R D,Olsson S,S9derstr9m B.Dynamics of phosphorus translocation in intact ectomycorrhizal systems:non-destructive monitoring using aβ-scanner.FEMS Microbiology Ecology,1996,19(3):171-180.
    [30]Filion M,St-Arnaud M,Fortin J A.Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms.New Phytologist,1999,141(3):525-533.
    [31]Smith K P,Goodman R M.Host variation for interactions with beneficial plant-associated microbes.Annual Review of Phytopathology,1999,37(1):473-491.
    [32]Dodd J C,Boddington C L,Rodriguez A,Gonzalez-Chavez C,Mansur I.Mycelium of arbuscular mycorrhizal fungi(AMF)from different genera:form,function and detection.Plant and Soil,2000,226(2):131-151.
    [33]Yao H,He Z,Wilson M J,Campbell C D.Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use.Microbial Ecology,2000,40(3):223-237.
    [34]O'donnell A G,Seasman M,Macrae A,Waite I,Davies J T.Plants and fertilisers as drivers of change in microbial community structure and function in soils.Plant and Soil,2001,232(1/2):135-145.
    [35]Sun H,Terhonen E,Koskinen K,Paulin L,Kasanen R,Asiegbu F O.Bacterial diversity and community structure along different peat soils in boreal forest.Applied Soil Ecology,2014,74:37-45.
    [36]Li X,Sun M L,Zhang H H,Xu N,Sun G Y.Use of mulberry-soybean intercropping in salt-alkali soil impacts the diversity of the soil bacterial community.Microbial Biotechnology,2016,9(3):293-304.
    [37]tursováM,ifcˇákováL,Leigh M B,Burgess R,Baldrian P.Cellulose utilization in forest litter and soil:identification of bacterial and fungal decomposers.FEMS Microbiology Ecology,2012,80(3):735-746.
    [38]De Bruyn J M,Nixon L T,Fawaz M N,Johnson A M,Radosevich M.Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil.Applied and Environmental Microbiology,2011,77(17):6295-6300.
    [39]Huang L N,Tang F Z,Song Y S,Wan C Y,Wang S L,Liu W Q,Shu W S.Biodiversity,abundance,and activity of nitrogen-fixing bacteria during primary succession on a copper mine tailings.FEMS Microbiology Ecology,2011,78(3):439-450.
    [40]Zhang B C,Kong W D,Wu N,Zhang Y M.Bacterial diversity and community along the succession of biological soil crusts in the Gurbantunggut Desert,Northern China.Journal of Basic Microbiology,2016,56(6):670-679.
    [41]Fazi S,Amalfitano S,Pernthaler J,Puddu A.Bacterial communities associated with benthic organic matter in headwater stream microhabitats.Environmental Microbiology,2005,7(10):1633-1640.
    [42]Fierer N,Bradford M A,Jackson R B.Toward an ecological classification of soil bacteria.Ecology,2007,88(6):1354-1364.
    [43]Navarrete I A,Tsutsuki K.Land-use impact on soil carbon,nitrogen,neutral sugar composition and related chemical properties in a degraded Ultisol in Leyte,Philippines.Soil Science and Plant Nutrition,2008,54(3):321-331.
    [44]Mc Caig A E,Glover L A,Prosser J I.Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures.Applied and Environmental Microbiology,1999,65(4):1721-1730.
    [45]Mander C,Wakelin S,Young S,Condron L,O'Callaghan M.Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils.Soil Biology and Biochemistry,2012,44(1):93-101.
    [46]Huang J S,Hu B,Qi K B,Chen W J,Pang X Y,Bao W K,Tian G L.Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation.European Journal of Soil Biology,2016,72:35-41.
    [47]Zimmermann J,Gonzalez J M,Saiz-Jimenez C,Ludwig W.Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira cave using 23S rRNA sequence analyses.Geomicrobiology Journal,2005,22(7/8):379-388.
    [48]Araujo J F,de Castro A P,Costa M M C,Togawa R C,Júnior G J P,Quirino B F,Bustamante M M C,Williamson L,Handelsman J,Krüger RH.Characterization of soil bacterial assemblies in Brazilian savanna-like vegetation reveals acidobacteria dominance.Microbial Ecology,2012,64(3):760-770.
    [49]Meng H,Li K,Nie M,Wan J R,Quan Z X,Fang C M,Chen J K,Gu J D,Li B.Responses of bacterial and fungal communities to an elevation gradient in a subtropical montane forest of China.Applied Microbiology and Biotechnology,2013,97(5):2219-2230.
    [50]Dion P.Extreme views on prokaryote evolution//Dion P,Nautiyal C S,eds.Microbiology of Extreme Soils.Berlin,Heidelberg:Springer,2008:45-70.
    [51]Bardhan S,Jose S,Jenkins M A,Webster C R,Udawatta R P,Stehn S E.Microbial community diversity and composition across a gradient of soil acidity in spruce-fir forests of the southern Appalachian Mountains.Applied Soil Ecology,2012,61:60-68.
    [52]Lauber C L,Strickland M S,Bradford M A,Fierer N.The influence of soil properties on the structure of bacterial and fungal communities across land-use types.Soil Biology and Biochemistry,2008,40(9):2407-2415.
    [53]Logue J B,Lindstr9m E S.Species sorting affects bacterioplankton community composition as determined by 16S r DNA and 16S rRNA fingerprints.The ISME Journal,2010,4(6):729-738.
    [54]Lauber C L,Hamady M,Knight R,Fierer N.Pyrosequencing-based assessment of soil p H as a predictor of soil bacterial community structure at the continental scale.Applied and Environmental Microbiology,2009,75(15):5111-5120.
    [55]Chu H Y,Fierer N,Lauber C L,Caporaso J G,Knight R,Grogan P.Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes.Environmental Microbiology,2010,12(11):2998-3006.
    [56]Yuan Y L,Si G C,Wang J,Luo T X,Zhang G X.Bacterial community in alpine grasslands along an altitudinal gradient on the Tibetan Plateau.FEMS Microbiology Ecology,2014,87(1):121-132.
    [57]Zeng Q C,Dong Y H,An S S.Bacterial community responses to soils along a latitudinal and vegetation gradient on the Loess Plateau,China.PLoSOne,2016,11(4):e0152894.
    [58]H9gberg M N,H9gberg P,Myrold D D.Is microbial community composition in boreal forest soils determined by p H,C-to-N ratio,the trees,or all three?Oecologia,2007,150(4):590-601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700