用户名: 密码: 验证码:
塔西北地区早寒武世玉尔吐斯组热液作用及沉积模式
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrothermal activity and depositional model of the Yurtus Formation in the Early Cambrian,NW Tarim,China
  • 作者:张春宇 ; 管树巍 ; 吴林 ; 任荣
  • 英文作者:ZHANG Chunyu;GUAN Shuwei;WU Lin;REN Rong;Research Institute of Petroleum Exploration & Development,PetroChina;Institute of Geomechanics,Chinese Academy of Geological Sciences;
  • 关键词:沉积过程 ; 缓坡 ; 硅质热液活动 ; 塔西北 ; 早寒武世
  • 英文关键词:depositional process;;ramp;;silica-rich hydrothermal activity;;Northwest Tarim;;Early Cambrian
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:中国石油勘探开发研究院;中国地质科学院地质力学研究所;
  • 出版日期:2019-01-09 15:56
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.135
  • 基金:中国科学院战略型先导科技专项(A类)子课题(XDA14010101);; 中国石油天然气股份有限公司项目(2016A-02,2018A-01)
  • 语种:中文;
  • 页:DXQY201901020
  • 页数:10
  • CN:01
  • ISSN:11-3370/P
  • 分类号:206-215
摘要
埃迪卡拉纪-寒武纪之交全球沉积了一套黑色泥页岩和硅质岩组合,塔里木盆地早寒武世玉尔吐斯组即包含这样一套组合,并被认为是塔里木古生界主力烃源岩之一,然而目前对这套岩石组合的成因及沉积过程的研究还相对薄弱。在野外研究的基础上,将玉尔吐斯组分为5段,分为两个海进-海退旋回,认为其总体沉积于缓坡背景之上。对第一段硅质岩进行主量元素及稀土元素分析,结果显示其含有较低的Al/(Al+Fe+Mn)和较高的Fe/Ti值(均值分别为0.29和108.24)。在Al-Fe-Mn和Fe/Ti-Al(Al+Fe+Mn)图解上,多数样品落入热液作用范围,表明硅质岩主要受热液作用控制。硅质岩REE配分模式显示其不具有Eu的正异常和LREE富集的特征,这显示了海水对热液的稀释作用。靠近热液盆内口的库勒和什艾日克剖面发育较厚的硅质岩和一系列滑移变形构造。早寒武世时期,南天山洋已经打开,硅质热液广泛发育于整个塔北的深水和浅水区,这些迹象表明该区早寒武世仍然有很强的伸展构造活动。
        Black shale and chert suites were deposited during the Edicarian-Cambrian transition all around the world.The Early Cambrian Yurtus Formation in the Tarim Basin contains this rock suites and was considered to be one of the major Paleozoic source rocks in Tarim.However,the origin and depositional process of the rock suites are poorly understood.In this contribution,our field study shows that the Yurtus Formation can be divided into five stages and comprises two transgression-regression cycles.The cherts of stage 1are characterized by low Al/(Al+Fe+Mn)(average 0.29)and high Fe/Ti(average 108.24)ratios.In Al-FeMn and Fe/Ti-Al/(Al+Fe+Mn)diagrams,most of the samples show strong hydrothermal influence.Lacking pronounced positive Eu anomaly(average 0.84)and no LREE enrichment in the chert's REE pattern suggests seawater involvement to the sediment.Kule and Shiairike profiles near the hydrothermal vent are characterized by thicker chert and related deformation.In the Early Cambrian,the South Tianshan Ocean evolved into a mature ocean with silica-rich hydrothermal fluid spreading widely in the shallow and deep environment across northern Tarim Basin,reflecting strong extensional tectonic activities in this area.
引文
[1]AMTHOR J E,GROTZINGER J P,SCHRDER S,et al.Extinction of Cloudina and Namacalathus at the Precambrian-Cambrian Boundary in Oman[J].Geology,2003,31(5):431-434.
    [2]CANFIELD D E,POULTON S W,KNOLL A H,et al.Ferruginous conditions dominated later Neoproterozoic deepwater chemistry[J].Science,2008,321(5891):949-952.
    [3]CANFIELD D E,POULTON S W,NARBONNE G M.Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life[J].Science,2007,315(5808):92-95.
    [4]GROTZINGER J P,BOWRING S A,SAYLOR B Z,et al.Biostratigraphic and geochronologic constraints on early animal evolution[J].Science,1995,270(5236):598-604.
    [5]KIMURA H,WATANABE Y.Oceanic anoxia at the Precambrian-Cambrian boundary[J].Geology,2001,29(11):995-998.
    [6]KIRSCHVINK J L,MAGARITZ M,RIPPERDAN R L,et al.The Precambrian-Cambrian boundary:magnetostratigraphy and carbon isotopes resolve correlation problems between Siberia,Morocco,and South China[J].GSA Today,1991,1(4):69-91.
    [7]LANDING E.Precambrian-Cambrian boundary global stratotype ratified and a new perspective of Cambrian time[J].Geology,1994,22(2):179-182.
    [8]BRASIER M,SHIELDS G,KULESHOV V,et al.Integrated chemo-and biostratigraphic calibration of early animal evolution:Neoproterozoic-Early Cambrian of Southwest Mongolia[J].Geological Magazine,1996,133(4):445-485.
    [9]BRASIER M D,MAGARITZ M,CORFIELD R,et al.The carbon-and oxygen-isotope record of the Precambrian-Cambrian boundary interval in China and Iran and their correlation[J].Geological Magazine,1990,127(4):319-332.
    [10]HORAN M,MORGAN J,GRAUCH R,et al.Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers,Yukon Territory,Canada,and Hunan and Guizhou Provinces,China[J].Geochimica et Cosmochimica Acta,1994,58(1):257-265.
    [11]JIANG S Y,PI D H,HEUBECK C,et al.Early Cambrian ocean anoxia in South China[J].Nature,2009,459(7248):E5-E6.
    [12]LITVINOVA T.Composition,morphology,and origin of phosphate pellets:evidence from phosphorites of the Lesser Karatau[J].Lithology and Mineral Resources,2007,42(4):384-399.
    [13]MAZUMDAR A,BANERJEE D.Siliceous sponge spicules in the Early Cambrian chert-phosphorite member of the Lower Tal Formation,Krol Belt,Lesser Himalaya[J].Geology,1998,26(10):899-902.
    [14]MAZUMDAR A,BANERJEE D,SCHIDLOWSKI M,et al.Rare-earth elements and stable isotope geochemistry of early Cambrian chert-phosphorite assemblages from the Lower Tal Formation of the Krol Belt(Lesser Himalaya,India)[J].Chemical Geology,1999,156(1):275-297.
    [15]LU S,LI H,ZHANG C,et al.Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J].Precambrian Research,2008,160(1):94-107.
    [16]SHU L,DENG X,ZHU W,et al.Precambrian tectonic evolution of the Tarim Block,NW China:new geochronological insights from the Quruqtagh Domain[J].Journal of Asian Earth Sciences,2011,42(5):774-790.
    [17]XU B,ZOU H,CHEN Y,et al.The Sugetbrak basalts from northwestern Tarim Block of northwest China:geochronology,geochemistry and implications for Rodinia breakup and ice age in the Late Neoproterozoic[J].Precambrian Research,2013,236(5):214-226.
    [18]ZHANG C,LI H,WANG H.A review on Precambrian tectonic evolution of Tarim Block:possibility of interaction between Neoproterozoic plate subduction and mantle plume[J].Geological Review,2012,58(5):923-936.
    [19]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [20]高林志,王宗起,许志琴,等.塔里木盆地库鲁克塔格地区新元古代冰碛岩锆石SHRIMP U-Pb年龄新证据[J].地质通报,2010,29(2):205-213.
    [21]吴林,管树巍,任荣,等.前寒武纪沉积盆地发育特征与深层烃源岩分布:以塔里木新元古代盆地与下寒武统烃源岩为例[J].石油勘探与开发,2016,43(6):905-915.
    [22]吴林,管树巍,杨海军,等.塔里木北部新元古代裂谷盆地古地理格局与油气勘探潜力[J].石油学报,2017,38(4):375-385.
    [23]胡广,刘文汇,腾格尔,等.塔里木盆地下寒武统泥质烃源岩成烃生物组合的构造-沉积环境控制因素[J].石油与天然气地质,2014,35(5):685-695.
    [24]MCLENNAN S M.Relationships between the trace element composition of sedimentary rocks and upper continental crust[J].Geochemistry,Geophysics,Geosystems,2001,2(4):203-236.
    [25]张亚冠,杜远生,徐亚军,等.湘中震旦纪-寒武纪之交硅质岩地球化学特征及成因环境研究[J].地质论评,2015,61(3):499-510.
    [26]ADACHI M,YAMAMOTO K,SUGISAKI R.Hydrothermal chert and associated siliceous rocks from the northern Pacific their geological significance as indication od ocean ridge activity[J].Sedimentary Geology,1986,47(1/2):125-148.
    [27]BOSTRM K,PETERSON M,JOENSUU O,et al.Aluminum-poor ferromanganoan sediments on active oceanic ridges[J].Journal of Geophysical Research,1969,74(12):3261-3270.
    [28]MURRAY R W.Chemical criteria to identify the depositional environment of chert:general principles and applications[J].Sedimentary Geology,1994,90(3/4):213-232.
    [29]MURRAY R W,TENBRINK M R B,GERLACH D C,et al.Rare earth,major,and trace elements in chert from the Franciscan Complex and Monterey Group,California:assessing REE sources to fine-grained marine sediments[J].Geochimica et Cosmochimica Acta,1991,55(7):1875-1895.
    [30]MURRAY R W,TENBRINK M R B,JONES D L,et al.Rare earth elements as indicators of different marine depositional environments in chert and shale[J].Geology,1990,18(3):268-271.
    [31]EDMONDS H N,GERMAN C R.Particle geochemistry in the Rainbow hydrothermal plume,Mid-Atlantic Ridge[J].Geochimica et Cosmochimica Acta,2004,68(4):759-772.
    [32]GERMAN C R,HIGGS N C,THOMSON J,et al.A geochemical study of metalliferous sediment from the TAG Hydrothermal Mound,26°08′N,Mid-Atlantic Ridge[J].Journal of Geophysical Research:Atmospheres,1993,98(B6):9683-9692.
    [33]SHERRELL R M,FIELD M P,RAVIZZA G.Uptake and fractionation of rare earth elements on hydrothermal plume particles at 9°45′N,East Pacific Rise[J].Geochimica et Cosmochimica Acta,1999,63(11):1709-1722.
    [34]ELDERFIELD H,GREAVES M J.The rare earth elements in seawater[J].Nature,1982,296(5854):214-219.
    [35]HOLSER W T.Evaluation of the application of rare-earth elements to paleoceanography[J].Palaeogeography,Palaeoclimatology,Palaeoecology,1997,132(1):309-323.
    [36]PIEPGRAS D J,JACOBSEN S B.The behavior of rare earth elements in seawater:precise determination of variations in the North Pacific water column[J].Geochimica et Cosmochimica Acta,1992,56(5):1851-1862.
    [37]ZHOU X,CHEN D,QING H,et al.Submarine silica-rich hydrothermal activity during the earliest Cambrian in the Tarim Basin,Northwest China[J].International Geology Review,2014,56(15):1906-1918.
    [38]VAN DEN BOORN S,VAN BERGEN M,VROON P,et al.Silicon isotope and trace element constraints on the origin of~3.5Ga cherts:implications for Early Archaean marine environments[J].Geochimica et Cosmochimica Acta,2010,74(3):1077-1103.
    [39]周肖贝,李江海,傅臣建,等.塔里木盆地北缘南华纪-寒武纪构造背景及构造-沉积事件探讨[J].中国地质,2012,39(4):900-911.
    [40]石开波,刘波,刘红光,等.塔里木盆地东北缘库鲁克塔格地区新元古代构造-沉积演化[J].地学前缘,2017,24(1):297-307.
    [41]刘万洙,白雪峰,包亚范,等.新疆库鲁克塔格地区寒武-奥陶系硅质岩的岩石学特征及其成因分析[J].新疆地质,2006,24(4):344-347.
    [42]杨瑞东,张传林,罗新荣,等.新疆库鲁克塔格地区早寒武世硅质岩地球化学特征及其意义[J].地质学报,2006,80(4):598-605.
    [43]YU B,DONG H,WIDOM E,et al.Geochemistry of basal Cambrian black shales and cherts from the northern Tarim Basin,Northwest China:implications for depositional setting and tectonic history[J].Journal of Asian Earth Sciences,2009,34(3):418-436.
    [44]杨海波,高鹏,李兵,等.新疆西天山达鲁巴依蛇绿岩地质特征[J].新疆地质,2005,23(2):123-126.
    [45]姜常义,白开寅,黑爱芝,等.库鲁克塔格地区火山岩的岩浆过程与源区组成[J].岩石矿物学杂志,2000,19(1):8-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700