用户名: 密码: 验证码:
Realization of -bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Realization of -bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
  • 作者:付向群 ; 鲍皖苏 ; 黄合良 ; 李坦 ; 史建红 ; 汪翔 ; 张硕 ; 李风光
  • 英文作者:Xiang-Qun Fu;Wan-Su Bao;He-Liang Huang;Tan Li;Jian-Hong Shi;Xiang Wang;Shuo Zhang;Feng-Guang Li;Henan Key Laboratory of Quantum Information and Cryptography, Information Engineering University;Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China;
  • 英文关键词:quantum cloud computation;;quantum Fourier transform;;semiclassical quantum Fourier transform;;Shor's algorithm
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Henan Key Laboratory of Quantum Information and Cryptography, Information Engineering University;Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China;
  • 出版日期:2019-02-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Basic Research Program of China(Grant No.2013CB338002);; the National Natural Science Foundation of China(Grant No.61502526)
  • 语种:英文;
  • 页:ZGWL201902012
  • 页数:6
  • CN:02
  • ISSN:11-5639/O4
  • 分类号:117-122
摘要
To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.
        To overcome the difficulty of realizing large-scale quantum Fourier transform(QFT) within existing technology, this paper implements a resource-saving method(named t-bit semiclassical QFT over Z_(2~n)), which could realize large-scale QFT using an arbitrary-scale quantum register. By developing a feasible method to realize the control quantum gate Rk, we experimentally realize the 2-bit semiclassical QFT over Z_(2~3) on IBM's quantum cloud computer, which shows the feasibility of the method. Then, we compare the actual performance of 2-bit semiclassical QFT with standard QFT in the experiments.The squared statistical overlap experimental data shows that the fidelity of 2-bit semiclassical QFT is higher than that of standard QFT, which is mainly due to fewer two-qubit gates in the semiclassical QFT. Furthermore, based on the proposed method, N = 15 is successfully factorized by implementing Shor's algorithm.
引文
[1]Shor P W 1997 SIAM J.Comput.26 1484
    [2]Grover L K 1996 Proceeding 28th ACM Symposium on Theory of Computation,May 22-24,1996,New York,USA,p.212
    [3]Rivest R L,Shamir A and Adleman L M 1978 Commun.ACM 21 120
    [4]Diffie W and Hellman M E 1976 IEEE Trans.Inform.Theor.22 644
    [5]Jordan S P,Lee K S M and Preskil J 2012 Science 336 1130
    [6]Wang H F and Zhang S 2012 Chin.Phys.B 21 100309
    [7]Wiebe N,Braun D and Lloyd S 2012 Phys.Rev.Lett.109 050505
    [8]Long G L and Xiao L 2004 Phys.Rev.A 69 052303
    [9]Yu C H,Gao F,Wang Q L and Wen Q Y 2016 Phys.Rev.A 94 042311
    [10]Qu F M,Ji Z Q,Tian Y and Zhao S P 2018 Chin.Phys.B 27 070301
    [11]Huang H L,Zhao Q,Ma X F,Liu C,Su Z E,Wang X L,Li L,Liu N L,Sanders B C,Lu C Y and Pang J W 2017 Phys.Rev.Lett.119 050503
    [12]Xu G L,Qiu D,Zou X and Gruska J 2018 Reversibility and Universality(Berlin:Springer)pp.447-462
    [13]Coppersmith D 2002 arXiv:201067[quant-ph]
    [14]Griffiths R B and Niu C S 1996 Phys.Rev.Lett.76 3228
    [15]Chiaverini J,Britton J,Leibfried D,Knill E,Barrett M D,Blakestad RB,Itano J D,Jost J D,Langer C,Ozeri R,Schaetz T,Winel and D J2005 Science 308 997
    [16]Parker S and Plenio M B 2000 Phys.Rev.Lett.85 3049
    [17]Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information(London:Cambridge University Press)pp.216-247
    [18]Fu X Q,Bao W S,Zhou C and Song Z 2012 Chin.Sci.Bull.57 119
    [19]I B M 2016 http://www.research.ibm.com/quantum/
    [20]Fuchs C A 1996“Distinguishability and Accessible Information in Quantum Theory”,Ph.D.Dissertation(Albuquerque:University of New Mexico)
    [21]Ambainis A and Watrous J 2002 Theor.Comput.Sci.287 1
    [22]Qiu D,Li L,Mateus P and Sernadas A 2015 J.Comput.Syst.Sci.81359
    [23]Li K,Qiu D,Li L,Zheng S and Rong Z 2017 Inform.Process.Lett.120 23
    [24]Vandersypen L M K 2001“Experimental quantum computation with nuclear spins in liquid solution”,Ph.D.Dissertation(Palo Alto:Stanford University)
    [25]Lu C Y,Browne D E,Yang T and Pan J W 2007 Phys.Rev.Lett.99250504
    [26]IBM 2017 http://www.research.ibm.com/ibm-q/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700