用户名: 密码: 验证码:
纳米碳材料负载过渡金属氧化物用作超级电容器电极材料
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Carbon Nanomaterials Supported Transition Metal Oxides as Supercapacitor Electrodes:a Review
  • 作者:刘敏敏 ; 蔡超 ; 张志杰 ; 刘睿
  • 英文作者:LIU Minmin;CAI Chao;ZHANG Zhijie;LIU Rui;Ministry of Education Key Laboratory of Advanced Civil Engineering Material,College of Materials Science and Engineering,Tongji University;Institute of Sustainable Energy,Shanghai University;Institute for Advanced Study,Tongji University;State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure,Chinese Academy of Sciences;
  • 关键词:纳米碳材料 ; 过渡金属氧化物 ; 赝电容 ; 超级电容器
  • 英文关键词:carbon nanomaterials;;transition metal oxide;;pseudo-capacitance;;supercapacitor
  • 中文刊名:CLDB
  • 英文刊名:Materials Reports
  • 机构:同济大学材料科学与工程学院先进土木工程材料教育部重点实验室;上海大学可持续能源研究院;同济大学高等研究院;中国科学院福建物质结构研究所结构化学国家重点实验室;
  • 出版日期:2019-01-10
  • 出版单位:材料导报
  • 年:2019
  • 期:v.33
  • 基金:结构化学国家重点实验室开放基金(20170040);; 中央高校基本科研业务费专项资金(0400219376);; “千人计划”青年项目~~
  • 语种:中文;
  • 页:CLDB201901013
  • 页数:7
  • CN:01
  • ISSN:50-1078/TB
  • 分类号:106-112
摘要
与传统能量存储设备相比,超级电容器因具备比电容高、充放电快、绿色环保并且循环稳定性能优异等优点,在移动通信、电动汽车、国防和航空航天领域具有广阔的应用前景,已成为世界范围内的研究焦点。其中,超级电容器的电极材料是其性能的决定因素,常见的超级电容器电极材料包括碳材料、过渡金属氧化物和导电聚合物等。不同的电极材料的电荷储存机理不同,过渡金属氧化物具有典型的赝电容行为,依赖可逆的氧化还原反应和化学吸附/脱附过程来储存电荷,理论比电容高。然而,过渡金属氧化物同时存在导电性能差,循环稳定性不佳的缺点。碳材料主要表现双电层电容特性,依靠材料表面和电解质离子间的可逆物理吸附/脱附过程储存电荷,具有优异的倍率性能,符合实际生产和应用中对于超级电容器器件高寿命的要求,但其自身比电容相对较低。与单一属性的材料相比,复合材料往往表现出更加优异的电化学性能,大量的研究表明,过渡金属氧化物与碳材料的复合是解决上述问题的有效途径。碳材料因具有来源丰富、价格低廉、质量轻盈、比表面积高以及热稳定性好与电化学性能稳定等优点,日益受到重视,是构建赝电容电容器电极的首选基底材料。碳材料结构多样,近年来,零维的碳量子点、碳球,一维的碳纳米管、碳纳米纤维,二维的石墨烯、氧化石墨烯,三维的石墨烯泡沫、碳泡沫/海绵等均被成功地用于构建碳基复合电极材料,并取得了丰硕的成果。零维碳纳米材料具有高比表面积,提供了调节多孔性的灵活度,可以获得适合各自电解质溶液的最优化条件。一维碳纳米结构一般具有高长宽比和良好的电子传输性能,可以促进超级电容器电极的电荷转移。二维碳纳米结构具有比表面积大与导电性高、力学性能优良等特点,具备潜在赝电容行为,并且能增强超级电容器电极间的充放电反应动力学。利用三维导电材料作为模板,沉淀赝电容材料,可以构建高性能超级电容器电极。本文概述了不同维度碳材料负载过渡金属氧化物作为赝电容的电极材料及其电容性能,并对电极材料储能方面存在的不足和未来的研究方向做出了总结和展望,以期为制备性能优良、环境友好和高寿命的超级电容器提供参考。
        Compared with traditional energy storage devices,supercapacitors have been a research hot spot and diffusely adopted in the fields of mobile telecommunication,electric vehicle,aviation and national defense due to their high specific capacitance,high charge-discharge rate,environment-friendly and excellent cycling stability,etc. Among them,the electrode materials of the supercapacitors play a crucial role on their performances,and common electrode materials used for supercapacitors mainly include carbon materials,transition metal oxides,and conducting polymers.Different materials have diverse charge storage mechanisms. Transition metal oxides exhibit typical pseudo-capacitance behavior,which depends on reversible redox reaction and chemical adsorption/desorption process to store charge. However,transition metal oxides have poor conductivity and cycle stability. Carbon materials mainly performed the characteristics of electrochemical double layer capacitance are relied on the reversible physical adsorption/desorption process between the material surface and electrolyte ions to store energy. In addition,carbon materials possess superb rate capability,conforming to the high requirements of the device lifetime for practical application,while the specific capacitance is relatively low. The composite materials generally exhibit superior electrochemical properties than that of the single component materials. Massive studies indicated that the composite of transition metal oxides and carbon materials was an effective method to solve the above-mentioned problems.As the preferential substrate materials for the construction of pseudo-supercapacitor,carbon materials with the advantages of rich resource,low cost,light weight,high specific surface area,thermal and chemical stabilities have attracted increasingly attention. Moreover,carbon materials with various structures including zero dimensional( carbon dot and sphere),one dimensional( carbon tube and fiber),two dimensional( graphene and graphene oxide),three dimensional( graphene foam and carbon foam/sponge) carbon materials,etc,have been successfully applied to fabricate carbon-based composite electrode materials and have scored great successes,Zero-dimensional carbon nanomaterials with high specific surface area can provide flexibility to adjust porosity and obtain the optimal condition of respective electrolyte solution. One-dimensional nanostructures with high aspect ratio structure and excellent electronic or ionic transport properties can promote the charge transfer of supercapacitor electrodes. For two-dimensional carbon nanomaterials,their high specific surface area,admirable conductivity and superb mechanical pro-perties make them a potential pseudo-supercapacitor and enhance the charge-discharge reaction kinetics between the supercapacitor electrodes.High-performance supercapacitor electrodes can be constructed by utilizing three-dimensional nanomaterials as templates and depositing pseudosupercapacitor materials.This article summarizes the capacitive properties of transition metal oxide loaded on different dimensional carbon materials as electrode materials of pseudo-supercapacitor,and overviews their disadvantages in energy storage and future research directions,in order to provide a reference for preparing a high-performance,environmental-friendly and long-life supercapacitor.
引文
1 Wang F,Wu X,Yuan X,et al. Chemical Society Reviews,2017,46(22),6816.
    2 Winter M,Brodd R J. Chemical Reviews,2004,104,4245.
    3 Zhang L L,Zhao X S. Chemical Society Reviews,2009,38(9),2520.
    4 Zhi M,Xiang C,Li J,et al. Nanoscale,2013,5(1),72.
    5 Dubal D P,Ayyad O,Ruiz V,et al. Chemical Society Reviews,2015,44(7),1777.
    6 Pan H,Li J,Feng Y P. Nanoscale Research Letters,2010,5(3),654.
    7 Yu Z,Tetard L,Zhai L,et al. Energy&Environmental Science,2015,8(3),702.
    8 Meng Q,Cai K,Chen Y,et al. Nano Energy,2017,36,268.
    9 Wang J,Wang J,Kong Z,et al. Advanced Materials,2017,29(45),1703044.
    10 Kim M,Lee C,Jang J. Advanced Functional Materials,2014,24(17),2489.
    11 Raj C J,Rajesh M,Manikandan R,et al. Electrochimica Acta,2017,247,949.
    12 Zhang Y,Zhang H,Fang L,et al. Electrochimica Acta,2017,245,32.
    13 Raj C R,Bag S. Journal of Materials Chemistry A,2015,4(2),587.
    14 Phattharasupakun N,Wutthiprom J,Chiochan P,et al. Chemical Communications,2016,52(12),2585.
    15 Liang K,Tang X,Hu W. Journal of Materials Chemistry,2012,22(22),11062.
    16 Wu Z S,Wang D W,Ren W,et al. Advanced Functional Materials,2010,20(20),3595.
    17 Lin J,Liu Y,Wang Y,et al. Journal of Power Sources,2017,362,64.
    18 Pang H,Li X,Zhao Q,et al. Nano Energy,2017,35,138.
    19 Nguyen V H,Shim J J. Journal of Power Sources,2015,273,110.
    20 Wu P,Cheng S,Yao M,et al. Advanced Functional Materials,2017,27(34),1702160.
    21 Shen L,Wang J,Xu G,et al. Advanced Energy Materials,2015,5(3),1400977.
    22 Guan C,Liu X,Ren W,et al. Advanced Energy Materials,2017,7(8),1602391.
    23 Mondal A,Maiti S,Mahanty S,et al. Journal of Materials Chemistry A,2017,5(32),16854.
    24 He S,Chen W. Nanoscale,2015,7(16),6957.
    25 Li L,Wu Z,Yuan S,et al. Energy&Environmental Science,2014,7(7),2101.
    26 Huang G,Zhang Y,Wang L,et al. Carbon,2017,125,595.
    27 Tseng L H,Hsiao C H,Nguyen D D,et al. Electrochimica Acta,2018,266,284.
    28 Borenstein A,Hanna O,Ran A,et al. Journal of Materials Chemistry A,2017,5(25),12653.
    29 Chen X,Paul R,Dai L. National Science Review,2017,3,453.
    30 Barbieri O,Hahn M,Herzog A,et al. Carbon,2005,43(6),1303.
    31 Liu T,Jiang C,You W,et al. Journal of Materials Chemistry A,2017,5(18),8635.
    32 Chang J,Jin M,Yao F,et al. Advanced Functional Materials,2013,23(40),5074.
    33 Lv Z,Luo Y,Tang Y,et al. Advanced Materials,2017,30(2),1704531.
    34 Yuan A,Zhang Q. Electrochemistry Communications,2006,8(7),1173.
    35 Toupin M,Brousse T,Belanger D.Chemistry of Materials,2004,16,3184.
    36 Lota K,Sierczynska A,Lota G. International Journal of Electrochemistry,2011,2011,321473.
    37 Ma H,He J,Xiong D B,et al. ACS Applied Materials&Interfaces,2016,8(3),1992.
    38 Zhu S J,Li L,Liu J B,et al. ACS Nano,2018,12(2),1033.
    39 Guo M,Balamurugan J,Li X,et al. Small,2017,13(33),1701275.
    40 Li C,Balamurugan J,Kim N H,et al. Advanced Energy Materials,2017,8(8),1702014.
    41 Xiong T,Tan T L,Lu L,et al. Advanced Energy Materials,2018,8(14),1702630.
    42 Li S,Yu C,Yang J,et al. Energy&Environmentalence,2017,10(9),1958.
    43 Liu W W,Feng Y Q,Yan X B,et al. Advanced Functional Materials,2013,23(33),4111.
    44 Peng X. Chemical Society Reviews,2014,43(10),3303.
    45 Wang G P,Zhang L,Zhang J J. Chemical Society Reviews,2012,41(2),797.
    46 Li M,Zu M,Yu J,et al. Small,2017,13(12),1602994.
    47 Yu N,Yin H,Zhang W,et al. Advanced Energy Materials,2016,6(2),1501458.
    48 Sun P,Yi H,Peng T,et al. Journal of Power Sources,2017,341,27.
    49 Hu C C,Wang C W,Chang K H,et al. Nanotechnology,2015,26(27),274004.
    50 Xie L,Su F,Xie L,et al. Chemsuschem,2015,8(17),2917.
    51 Han Z,Pineda S,Murdock A T,et al. Journal of Materials Chemistry A,2017,5(33),17293.
    52 Liu Y,Miao X,Fang J,et al. ACS Applied Materials&Interfaces,2016,8(8),5251.
    53 Wang X,Wan F,Zhang L,et al. Advanced Functional Materials,2018,28(18),1707247.
    54 Li H,Jiang L,Cheng Q,et al. Electrochimica Acta,2015,164,252.
    55 He S,Hou H,Chen W. Journal of Power Sources,2015,280,678.
    56 Chen J,Xu J,Zhou S,et al. Nano Energy,2016,25,193.
    57 Du P,Liu H C,Yi C,et al. ACS Applied Materials&Interfaces,2015,7(43),23932.
    58 Yao M,Zhao X,Jin L,et al. Chemical Engineering Journal,2017,322,582.
    59 Dong X C,Xu H,Wang X W,et al. ACS Nano,2012,6(4),3206.
    60 Lin M C,Gong M,Lu B,et al. Science Foundation in China,2015,520(4),325.
    61 Wang Y,Chen J,Cao J,et al. Journal of Power Sources,2014,271,269.
    62 Lu Z,Foroughi J,Wang C,et al. Advanced Energy Materials,2017,8(8),1702047.
    63 Mo M,Chen C,Gao H,et al. Electrochimica Acta,2018,269,11.
    64 Choi J H,Lee C,Cho S,et al. Carbon,2018,132,16.
    65 Li X,Tang Y,Song J,et al. Carbon,2017,129,236.
    66 Malik R,Zhang L,Mcconnell C,et al. Carbon,2017,116,579.
    67 Ma X,Liu J,Liang C,et al. Journal of Materials Chemistry A,2014,2(32),12692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700