用户名: 密码: 验证码:
初始温度对CH_4/RP-3航空煤油混合燃料层流燃烧特性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of initial temperature on the laminar combustion characteristics of CH_4/RP-3 mixed fuel
  • 作者:刘宇 ; 孙震 ; 汤卓 ; 刘蕴文 ; 赵欢 ; 曾文
  • 英文作者:LIU Yu;SUN Zhen;TANG Zhuo;LIU Yunwen;ZHAO Huan;ZENG Wen;Faculty of Aero Engine,Shenyang Aerospace University;North China Metrology Accreditation Technology Company Limited;
  • 关键词:混合燃料 ; 层流燃烧速度 ; 马克斯坦长度 ; 火焰拉伸率 ; 燃烧稳定性
  • 英文关键词:mixed fuel;;laminar burning velocity;;Markstein length;;flame stretch rate;;combustion stability
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:沈阳航空航天大学发动机学院;北方测盟科技有限公司;
  • 出版日期:2019-01-25 09:52
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(51606129);国家自然科学基金(51676132);; 辽宁省教育厅一般项目(L2016029)
  • 语种:中文;
  • 页:HKDI201902011
  • 页数:9
  • CN:02
  • ISSN:11-2297/V
  • 分类号:99-107
摘要
采用定容燃烧实验装置对初始压力为0.1MPa、当量比为0.7~1.5、甲烷体积分数为0、0.4和0.8,以及3种初始温度工况下,CH_4/RP-3航空煤油混合燃料层流燃烧特性进行实验研究。获得混合燃料火焰发展图片、层流燃烧速度和马克斯坦长度等,并分析初始温度对CH_4/RP-3航空煤油混合燃料层流燃烧速度及燃烧稳定性的影响。结果表明,当火焰拉伸率趋于0时,非线性拟合方法 NLM2(nonlinear fitting method2)能够准确预测拉伸火焰传播速度随火焰拉伸率变化规律,外推可获得较为准确的无拉伸火焰传播速率。初始温度对稀混合燃料火焰传播速度的影响较大,而对化学当量比和浓混合燃料火焰传播速度的影响较小。3种甲烷体积分数混合燃料的层流燃烧速度均随初始温度增加而增加。当初始温度为420K时,马克斯坦长度随当量比减小最快,而当初始温度为480K时,马克斯坦长度减小最慢。在稀混合气和化学当量比工况,随着初始温度增加,混合燃料马克斯坦长度减小,混合燃料燃烧稳定性变差,而在浓混合气工况,各初始温度马克斯坦长度趋于一致,此时,初始温度增加对燃烧稳定性影响较小。
        The laminar combustion characteristics of CH_4/RP-3 mixed fuel were studied in a constant volume chamber at initial pressures of 0.1 MPa,equivalence ratios of 0.7-1.5,methane volume fraction of 0,0.4,0.8 and three initial temperatures.The flame propagation photos,laminar burning velocity and Markstein length were obtained,and the effects of initial temperature on laminar burning velocity and combustion stability of CH_4/RP-3 mixed fuel were analyzed.The results showed that when the flame stretch was close to 0,the non-linear fitting method NLM2 can well predict the change of stretched flame speed with varying stretch rate,and extrapolation can obtain more accurate unstretched flame speed.The initial temperature had a great influence on the flame propagation velocity of lean mixed fuels,but little effect for chemical equivalent ratio or concentrated mixtures.The laminar burning velocities of CH_4/RP-3 mixed fuel with three methane volume fractions increased with the growing initial temperature.When the initial temperature was 420 K,Markstein length reduced fastest with the increase of equivalence ratio,and when the initial temperature was 480 K,Markstein length reduced slowest with the increase of equivalence ratio.Under lean and stoichiometric mixture conditions,with the increase of initial temperature,Markstein length decreased and combustion stability became worse.Under rich mixture condition,Markstein length with different initial temperatures tended to the same,and the effects of initial temperature on combustion stability was small.
引文
[1]柴建,张钟毓,李新,等.中国航空燃油消费分析及预测[J].管理评论,2016,28(1):11-21.CHAI Jian,ZHANG Zhongyu,LI Xin,et al.Analysis and forecast of aviation fuel consumption in China[J].Management Review,2016,28(1):11-21.(in Chinese)
    [2]杨万柳.国际航空排放全球治理的国际视域:以国际民航组织为中心[J].北京理工大学学报(社会科学版),2015,17(4):123-128.YANG Wanliu.The international perspective of global governance on international aviation emissions:centering on ICAO[J].Journal of Beijing Institute of Technology(Social Sciences Edition),2015,17(4):123-128.(in Chinese)
    [3] ZHANG C,HUI X,LIN Y Z,et al.Recent development in studies of alternative jet fuel combustion:progress,challenges,and opportunities[J].Renewable and Sustainable Energy Reviews,2016,54:120-138.
    [4] WITHERS M R,MALINA R,GILMORE C K.Economic and environmental assessment of liquefied natural gas as a supplemental aircraft fuel[J].Progress in Aerospace Sciences,2014,66:17-36.
    [5] PEREIRA S R,FONTES T,COELHO M C.Can hydrogen or natural gas be alternatives for aviation?:a life cycle assessment[J].International Journal of Hydrogen Energy,2014,39(25):13266-13275.
    [6] YAHYAOUI M.The use of LNG as aviation fuel:combustion and emissions[R].AIAA-2015-3730,2015.
    [7] KUMAR K,SUNG C J,XIN H.Laminar flame speeds and extinction limits of conventional and alternative jet fuels[J].Fuel,2011,90(3):1004-1011.
    [8] VUKADINOVIC V,HABISREUTHER P,ZARZALIS N.Influence of pressure and temperature on laminar burning velocity and Markstein number of kerosene Jet A-1:experimental and numerical study[J].Fuel,2013,111(3):401-410.
    [9] FAR K E,PARSINEJAD F,METGHALCHI H.Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures[J].Fuel,2010,89(5):1041-1049.
    [10]曾文,陈欣,马洪安,等.RP-3航空煤油层流燃烧特性的实验[J].航空动力学报,2015,30(12):2888-2896.ZENG Wen,CHEN Xin,MA Hongan,et al.Experiment on laminar combustion characteristics of RP-3 kerosene[J].Journal of Aerospace Power,2015,30(12):2888-2896.(in Chinese)
    [11] HU E J,HUANG Z H,HE J J.Experimental and numerical study on laminar burning characteristics of premixed methane/hydrogen/air flames[J].International Journal of Hydrogen Energy,2009,34(11):4876-4888.
    [12]刘宇,孙震,罗睿,等.CH4/RP-3航空煤油混合燃料燃烧特性的实验研究[J].推进技术,2018,39(5):1177-1186.LIU Yu,SUN Zhen,LUO Rui,et al.Experimental study on combustion characteristics of CH4/RP-3 kerosene mixed fuel[J].Journal of Propulsion Technology,2018,39(5):1177-1186.(in Chinese)
    [13] BRADLEY D,HICKS R A,LAWES M,et al.The measurement of laminar burning velocities and Markstein numbers for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion bomb[J].Combustion and Flame,1998,115(1):126-144.
    [14] FRANKEL M,SIVASHINSKY G.On effects due to thermal expansion and Lewis number in spherical flame propagation[J].Combustion Science and Technology,1983:31:131-138.
    [15] CHEN Z,JU Y.Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame[J].Combustion Theory and Modeling,2007,11(3):427-453.
    [16] RONNEY P D,SIVASHINSKY G.A theoretical study of propagation and extinction of nonsteady spherical flame fronts[J].Journal on Applied Mathematic,1989,49(4):1029-1046.
    [17] KELLEY A P,LAW C K.Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames[J].Combustion and Flame,2009,156(9):1844-1851.
    [18]刘宇,曾文,马洪安,等.RP-3航空煤油3组分模拟替代燃料燃烧反应机理[J].航空动力学报,2016,31(9):2055-2064.LIU Yu,ZENG Wen,MA Hongan,et al.Combustion reaction mechanism of three-component simulation surrogate fuel for RP-3kerosene[J].Journal of Aerospace Power,2016,31(9):2055-2064.(in Chinese)
    [19]胡二江,黄佐华.高温高压下甲烷-氢气预混层流燃烧研究[R].广州:中国工程热物理学会燃烧学学术会议,2010.
    [20] LIU Dong.Kinetic analysis of the chemical effects of hydrogen addition on dimethyl ether flames[J].Internal Journal of Hydrogen Energy,2014,39(24):13014-13019.
    [21]罗睿,刘宇,孙震,等.CH4/C10H22混合燃料燃烧特性实验及反应动力学研究[J].沈阳航空航天大学学报,2017,34(6):46-54.LUO Rui,LIU Yu,SUN Zhen,et al.Experimental study and reaction kinetics analysis on combustion characteristics of CH4/C10H22 mixed fuel[J].Journal of Shenyang Aerospace University,2017,34(6):46-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700