用户名: 密码: 验证码:
黏性土压缩过程临界孔径现象及固有分形特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Critical pore-size phenomenon and intrinsic fractal characteristic of clay in process of compression
  • 作者:陶高梁 ; 朱学良 ; 胡其志 ; 庄心善 ; 何俊 ; 陈银
  • 英文作者:TAO Gao-liang;ZHU Xue-liang;HU Qi-zhi;ZHUANG Xin-shan;HE Jun;CHEN Yin;School of Civil Engineering, Architecture and Enviroment, Hubei University of Technology;
  • 关键词:压汞法 ; 分形理论 ; 临界孔径 ; 固有分形特征
  • 英文关键词:mercury intrusion method;;fractal theory;;critical pore-size;;intrinsic fractal characteristic
  • 中文刊名:YTLX
  • 英文刊名:Rock and Soil Mechanics
  • 机构:湖北工业大学土木建筑与环境学院;
  • 出版日期:2018-07-06 18:22
  • 出版单位:岩土力学
  • 年:2019
  • 期:v.40;No.298
  • 基金:国家自然科学基金项目(No.51409097,No.51408201,No.41772332);; 湖北省自然科学基金项目(No.2015CFB297,No.2014CFB591);; 湖北省教育厅科研计划项目(No.D20161405)~~
  • 语种:中文;
  • 页:YTLX201901005
  • 页数:10
  • CN:01
  • ISSN:42-1199/O3
  • 分类号:88-97
摘要
研究土体压缩过程孔隙的分形特性时,常常对试验测量范围内所有孔隙进行整体分析。然而,研究发现大小孔隙分形行为存在较大差别,特别对压缩的响应也显著不同。为阐述黏性土压缩过程大小孔隙的不同响应及分形特征,并对其变化规律进行刻画,以不同干密度的武汉黏性土为研究对象,利用压汞法获取土体孔隙分布数据,基于分形理论拟合分析其分维数。研究发现:孔隙孔径-体积分布图中,均存在特殊的临界孔径现象,临界孔径前后的孔隙分布规律及其对压缩变形的响应显著不同,将大于临界孔径的孔隙定义为大孔隙,小于临界孔径的孔隙定义为小孔隙;小孔隙分布具有天然较强的分形特征,且基本不随干密度的变化而变化,称之为固有分形特征;大孔隙分布远离固有分形特征,分形行为较弱;随着干密度的不断增大,大孔隙的分形特征逐渐增强,且不断逼近小孔隙的固有分形特征。因此,小孔隙的固有分形特征可作为黏性土压缩的基准指标,压缩是迫使大孔隙不断调整趋于更强分形分布且逐步向基准指标靠拢的过程。
        The holistic analysis of all the pores within the range of experimental measurements is often performed when studying the fractal characteristic of soil pores under compression. However, this studies show that the fractal behavior of large pores has great difference with that of small pores, especially their response to compression. To illuminate the different fractal characteristics, the different responses of large and small pores under compression, and describe their variation laws, the pore-size distribution data of Wuhan clay with different dry density are obtained by mercury intrusion method. Afterward, these pore-size distribution data are analyzed and fitted to obtain the fractal dimensions based on fractal theory. The result shows that, there is a special critical pore-size in the pore volume and pore-size distribution curve. The distribution laws of pores larger and smaller than critical pore-size, as well as their responses to compression deformation, are significant different. The pores larger than the critical pore-size are defined as large pores and those smaller than the critical pore-size are defined as small pores. The distribution of small pores has stronger natural fractal characteristic, and does not vary with the dry density, which is referred to as intrinsic fractal characteristic. The distribution of large pores is far from the intrinsic fractal characteristic, which indicates that its fractal behavior is weaker than that of small pores. With the increasing of dry density, the fractal characteristic of large pores is gradually enhanced to continually approach the intrinsic fractal characteristic of small pores. Therefore, the intrinsic fractal characteristic of small pores can be used as a compacted reference indicator of clay, and the essence of compression process is that the large pores adjust to a stronger fractal distribution under compression and gradually approach the reference indicator.
引文
[1]DELAGE P,LEFEBVRE G.Study of the structure of a sensitive Champlain clay and of its evolut[J].Canadian Geotechnical Journal,1984,21(1):21-35.
    [2]周晖,房营光,曾铖.广州饱和软土固结过程微孔隙变化的试验分析[J].岩土力学,2010,31(增刊1):138-144.ZHOU Hui,FANG Ying-guang,ZENG Cheng.Experimental analysis of micropore change of Guangzhou saturated soft soil in consolidation process[J].Rock and Soil Mechanics,2010,31(Supp.1):138-144.
    [3]陈波,孙德安,高游,等.上海软黏土的孔径分布试验研究[J].岩土力学,2017,38(9):2523-2530.CHEN Bo,SUN De-an,GAO Yong,et al.Experimental study of pore-size distribution of Shanghai soft clay[J].Rock and Soil Mechanics,2017,38(9):2523-2530.
    [4]张先伟,孔令伟,郭爱国,等.基于SEM和MIP试验结构性黏土压缩过程中微观孔隙的变化规律[J].岩石力学与工程学报,2012,31(2):406-412.ZHANG Xian-wei,KONG Ling-wei,GUO Ai-guo,et al.Evolution of microscopic pore of structured clay in compression process based on SEM and MIP test[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(2):406-412.
    [5]李晓军,张登良.路基填土单轴受压细观结构CT监测分析[J].岩土工程学报,2000,22(2):205-209.LI Xiao-Jun,ZHANG Deng-liang.Monitoring change of structure of road foundation soil in uniaxial compression test with CT[J].Chinese Jounal of Geotechnical Engineering,2000,22(2):205-209.
    [6]OLESCHKO K B,FIGUEROA S,MIRANDA M E,et al.Mass fractal dimension and some selected physical properties of contrasting soils and sediments of Mexico[J].Soil and Tillage Research,2000,55:43-61.
    [7]XU Yong-fu.Calculation of unsaturated hydraulic conductivity using a fractal model for the pore-size distribution[J].Computers and Geotechnics,2004,31(7):549-557.
    [8]TAO Gao-liang,ZHANG Ji-ru.Two categories of fractal models of rock and soil expressing volume and size-distribution of pores and grains[J].Chinese Science Bulletin,2009,54(23):4458-4467.
    [9]张季如,祝杰,黄丽,等.固结条件下软黏土微观孔隙结构的演化及其分形描述[J].水利学报,2008,39(4):394-400.ZHANG Ji-ru,ZHU Jie,HUNGA Li,et al.Evolution of micro pore structure of soft clay and its fractal features under consolidation[J].Journal of Hydraulic Engineering,2008,39(4):394-400.
    [10]王升福,杨平,刘贯荣,等.人工冻融软黏土微观孔隙变化及分形特性分析[J].岩土工程学报,2016,38(7):1254-1261.WANG Sheng-fu,YANG Ping,LIU Guan-rong,et al.Micro pore change and fractal characteristics of artificial freeze thaw soft clay[J].Chinese Journal of Geotechnical Engineering,2016,38(7):1254-1261.
    [11]薛茹,胡瑞林,毛灵涛.软土加固过程中微结构变化的分形研究[J].土木工程学报,2006,39(10):87-91.XUE Ru,HU Rui-lin,MAO Ling-tao.Fractal study on the microstructure variation of soft soils in consolidation process[J].China Civil Engineering Journal,2006,39(10):87-91.
    [12]陶高梁,孔令伟,肖衡林,等.土-水特征曲线的分形特性及其分析拟合[J].岩土力学,2014,35(9):2443-2447.TAO Gao-liang,KONG Ling-wei,XIAO Heng-lin,et al.Fractal characteristics and fitting analysis of soil-water characteristic curves[J].Rock and Soil Mechanics,2014,35(9):2443-2447.
    [13]WASHBURN E W.Note on a method of determining the distribution of pore sizes in a porous material[J].Proceedings of the National Academy of Sciences of the United States of America,1921,7(4):115.
    [14]张先伟,孔令伟.利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J].岩土力学,2013,34(增刊2):134-142.ZHANG Xian-wei,KONG Ling-rong.Study of pore characteristics of offshore clay by SEM and MIP and NAmethods[J].Rock and Soil Mechanics,2013,34(Supp.2):134-142.
    [15]GREGG S J,SING K S W.Adsorption surface area and porosity[M].London:Academic Press,1982.
    [16]陶高梁,张季如,庄心善,等.压缩变形影响下的土-水特征曲线及其简化表征方法[J].水利学报,2014,45(10):1239-1246.TAO Gao-liang,ZHANG Ji-ru,ZHUANG Xin-shan,et al.Influence of compression deformation on the soil-water characteristic curve and its simplified representation method[J].Journal of Hydraulic Engineering,2014,45(10):1239-1246.
    [17]谈云志,孔令伟,郭爱国,等.压实过程对红黏土的孔隙分布影响研究[J].岩土力学,2010,31(5):1427-1430.TAN Yun-zhi,KONG Ling-wei,GUO Ai-guo,et al.Research on effect of compaction on pore size distribution of laterite soil[J].Rock and Soil Mechanics,2010,31(5):1427-1430.
    [18]张先伟,王常明,李军霞,等.蠕变条件下软土微观孔隙变化特性[J].岩土力学,2010,31(4):1061-1067.ZHANG Xian-wei,WANG Chang-ming,LI Jun-xia,et al.Variation characteristics of soft clay micropore in creep condition[J].Rock and Soil Mechanics,2010,31(4):1061-1067.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700