用户名: 密码: 验证码:
环境作用下混凝土结构性能演化与控制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:State-of-the-art on performance evolution and control of concrete structures subjected to environmental actions
  • 作者:缪昌文 ; 顾祥林 ; 张伟 ; 郭弘原
  • 英文作者:MIAO Changwen;GU Xianglin;ZHANG Weiping;GUO Hongyuan;School of Materials Science and Engineering, Southeast University;Key Laboratory of Performance Evolution and Control for Engineering Structures of the Ministry of Education, Tongji University;College of Civil Engineering, Tongji University;
  • 关键词:混凝土结构 ; 环境作用 ; 时变可靠度 ; 性能退化 ; 性能控制
  • 英文关键词:reinforced concrete structure;;environmental action;;time-dependent reliability;;performance degradation;;performance control
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:东南大学材料科学与工程学院;同济大学工程结构性能演化与控制教育部重点实验室;同济大学土木工程学院;
  • 出版日期:2018-10-24 10:12
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金重大国际(地区)合作研究项目(51320105013);; 国家重点基础研究发展计划(973计划)(2015CB655100)
  • 语种:中文;
  • 页:JZJB201901003
  • 页数:10
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:5-14
摘要
以环境作用下混凝土结构的性能演化与控制为主线,对相关研究成果进行回顾与分析。结果表明,经过二十余年的研究,对环境介质的侵蚀机理、锈蚀混凝土构件的受力性能、结构的时变可靠度等基本理论问题有了清晰的认识;开发了钢筋锈蚀监测和检测、混凝土结构电化学和自修复技术;明确了结构全寿命设计与维护的基本概念。但要建立完善的结构全寿命设计与维护理论,未来尚应在研究方法上以不确定性的研究为主,在研究内容上聚焦时变性,充分关注环境作用的时空变异性和材料细观层面的非匀质性。
        The state-of-the-art on performance evolution and control of concrete structures subjected to environmental actions was reviewed and analyzed. It was found that after over 20 years' research, the basic theoretical issues including the ingress mechanisms of environmental media, mechanical behavior of corroded reinforced concrete structural members and time-dependent reliabilities of structures have been extensively studied; the monitoring and inspection techniques for the corrosion of steel bars and the electrochemical rehabilitation and self-healing techniques for concrete structures have been developed; the basic concept for the life-cycle design and maintenance of concrete structures has been proposed. However, it was suggested that for the future development of life-cycle design and maintenance theories of concrete structures, the research methodology should be shifted to indeterminate problems from determinate problems, and the research objectives should be focused on the time-dependent issues, with due focuses on the varying properties of time-dependent and space-dependent environmental actions and the heterogeneous properties of materials in the meso-scale.
引文
[1] MEHATA P K, MONTEIRO P J M. Concrete: microstructure, properties, and materials[M]. New York: The McGrew-Hills Companies, Inc., 2006: 176-182.
    [2] CARE S. Influence of aggregates on chloride diffusion coefficient into mortar[J]. Cement and Concrete Research, 2003, 33(7): 1021-1028.
    [3] BAROGHEL-BOUNY V, MAINGUY M, LASSABATERE T, et al. Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials[J]. Cement and Concrete Research, 1999, 29(8): 1225-1238.
    [4] MOUNAJED G, OBEID W. A new coupling FE model for the simulation of thermal-hydro-mechanical behaviour of concretes at high temperatures[J]. Materials and Structures, 2004, 37(6): 422- 432.
    [5] QIAN C, CHEN D, WANG H, et al. Simultaneous heat and moisture transfer in concrete with time-dependent boundary conditions[J]. Magazine of Concrete Research, 2008, 60(10): 725-733.
    [6] PAPADAKIS V G, VAYENAS C G, FARDIS M N. Fundamental modeling and experimental investigation of concrete carbonation[J]. ACI Materials Journal, 1991, 88(4): 363-373.
    [7] 李果,袁迎曙,耿欧. 气候条件对混凝土碳化速度的影响[J]. 混凝土, 2004(11): 49-51. (LI Guo, YUAN Yingshu, GENG Ou. Influences of climate conditions to the concrete carbonization rates[J]. Concrete, 2004(11): 49-51. (in Chinese))
    [8] 张云升,孙伟,陈树东,等. 弯拉应力作用下粉煤灰混凝土的1D和2D碳化[J]. 东南大学学报(自然科学版), 2007, 37(1): 118-122.(ZHANG Yunsheng, SUN Wei, CHEN Shudong, et al. 1D and 2D carbonation of fly ash concrete under flexural stress[J]. Journal of Southeast University (Natural Science Edition), 2007, 37(1): 118-122. (in Chinese))
    [9] JIANG C, GU X L, ZHANG W P, et al. Modeling of carbonation in tensile zone of plain concrete beams damaged by cyclic loading[J]. Construction and Building Materials, 2015,77: 479- 488.
    [10] JIANG C, HUANG Q H, GU X L, et al. Experimental investigation on carbonation in fatigue-damaged concrete[J]. Cement and Concrete Research,2017,99:38-52.
    [11] JIANG C, GU X L, HUANG Q H, et al. Carbonation depth predictions in concrete bridges under changing climate conditions and increasing traffic loads[J]. Cement and Concrete Composites, 2018, 93: 140-154.
    [12] 金伟良,延永东,王海龙. 氯离子在受荷混凝土内的传输研究进展[J]. 硅酸盐学报, 2010, 38(11): 2217-2224.(JIN Weiliang, YAN Yongdong, WANG Hailong. Research progress on the chloride transportation in stressed concrete[J]. Journal of the Chinese Ceramic Society, 2010, 38(11): 2217-2224.(in Chinese))
    [13] SUN C, CHEN J, ZHU J, et al. A new diffusion model of sulfate ions in concrete[J]. Construction and Building Materials, 2013, 39: 39- 45.
    [14] HOSSACK A M, THOMAS M D A. The effect of temperature on the rate of sulfate attack of Portland cement blended mortars in Na2SO4 solution[J]. Cement and Concrete Research, 2015, 73: 136-142.
    [15] JIANG Z L, HUANG Q H, XI Y P, et al. Experimental study of diffusivity of the interfacial transition zone between cement paste and aggregate[J]. Journal of Materials in Civil Engineering, 2016, 28(10):04016109.
    [16] 牛荻涛,孙丛涛. 混凝土碳化与氯离子侵蚀共同作用研究[J]. 硅酸盐学报, 2013, 41(8): 1094-1099.(NIU Ditao, SUN Congtao. Study on interaction of concrete carbonation and chloride corrosion[J]. Journal of the Chinese Ceramic Society, 2013, 41(8): 1094-1099.(in Chinese))
    [17] 付传清,屠一军,金贤玉,等. 荷载作用对混凝土中氯盐传输的影响研究进展[J]. 硅酸盐学报, 2015, 43(4): 400- 410. (FU Chuanqing, TU Yijun, JIN Xianyu, et al. Load effect on chloride transportation in concrete: a short review[J]. Journal of the Chinese Ceramic Society,2015,43(4):400- 410.(in Chinese))
    [18] HUANG Q H, JIANG Z L, ZHANG W P, et al. Numerical analysis of the effect of coarse aggregate distribution on concrete carbonation[J]. Construction and Building Materials, 2012, 37: 27-35.
    [19] HUANG Q H, JIANG Z L, GU X L, et al. Numerical simulation of moisture transport in concrete based on a pore size distribution model[J]. Cement and Concrete Research,2015, 67: 31- 43.
    [20] BAZANT Z P. Physical model for steel corrosion in concrete sea structures: theory[J]. Journal of the Structural Division, 1979, 105(6): 1137-1153.
    [21] ALONSO C, ANDRADE C, GONZALEZ J A. Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types[J]. Cement and Concrete Research, 1988, 18(5): 687- 698.
    [22] RAUPACH W. Investigations on the influence of oxygen on corrosion of steel in concrete: part Ⅰ[J]. Materials and Structures, 1996, 29(3): 174-184.
    [23] RAUPACH M. Investigations on the influence of oxygen on corrosion of steel in concrete: part Ⅱ[J]. Materials and Structures, 1996, 29(4): 226-232.
    [24] RAUPACH M. Models for the propagation phase of reinforcement corrosion: an overview[J]. Materials and Corrosion, 2006, 57(8): 605- 613.
    [25] HORNBOSTEL K, ANGST U M, ELSENER B, et al. On the limitations of predicting the ohmic resistance in a macro-cell in mortar from bulk resistivity measurements[J].Cement and Concrete Research, 2015,76:147-158.
    [26] LIU T, WEYERS R W. Modeling the dynamic corrosion process in chloride contaminated concrete structures[J]. Cement and Concrete Research, 1998, 28(3): 365-379.
    [27] AHAMD S, BHATTACHARJEE B. Empirical modelling of indicators of chloride-induced rebar corrosion[J]. Journal of Structural Engineering, 2000, 27(3): 195-207.
    [28] ZHANG W P, SONG X B, GU X L, et al. Tensile and fatigue behavior of corroded rebars[J]. Construction and Building Materials, 2012, 34: 409- 417.
    [29] STEWART M G, AL-HARTHY A. Pitting corrosion and structural reliability of corroding RC structures: experimental data and probabilistic analysis[J]. Reliability Engineering & System Safety, 2008, 93(3): 373-382.
    [30] ZHANG W P, ZHOU B B, GU X L, et al. Probability distribution model for cross-sectional area of corroded reinforcing steel bars[J]. Journal of Materials in Civil Engineering, 2014, 26(5): 822-832.
    [31] DU Y G, CLARK L A, CHAN A H C. Residual capacity of corroded reinforcing bars[J]. Magazine of Concrete Research, 2005, 57(3): 135-147.
    [32] 袁迎曙,贾福萍,蔡跃. 锈蚀钢筋混凝土梁的结构性能退化模型[J]. 土木工程学报, 2001, 34(3): 47-52.(YUAN Yingshu, JIA Fuping, CAI Yue. The structural behavior deterioration model for corroded reinforced concrete beams[J]. China Civil Engineering Journal, 2001, 34(3): 47-52. (in Chinese))
    [33] 张伟平,商登峰,顾祥林. 锈蚀钢筋应力-应变关系研究[J]. 同济大学学报(自然科学版), 2006, 34(5): 586-592.(ZHANG Weiping, SHANG Dengfeng, GU Xianglin. Stress-strain relationship of corroded steel bars[J]. Journal of Tongji University (Natural Science),2006, 34(5): 586-592.(in Chinese))
    [34] ZHANG W P, CHEN H, GU X L. Tensile behaviour of corroded steel bars under different strain rates[J]. Magazine of Concrete Research,2016,68(3):127-140.
    [35] APOSTOLOPOULOS C A, PAPADOPOULOS M P. Tensile and low cycle fatigue behavior of corroded reinforcing steel bars S400[J]. Construction and Building Materials, 2007, 21(4): 855-864.
    [36] GU X L, GUO H Y, ZHOU B B, et al. Corrosion non-uniformity of steel bars and reliability of corroded RC beams[J]. Engineering Structures,2018, 167: 188-202.
    [37] VAL D V. Deterioration of strength of RC beams due to corrosion and its influence on beam reliability[J]. Journal of Structural Engineering, 2007, 133(9): 1297-1306.
    [38] ALONSO C, ANDRADE C, RODRIGUEZ J, et al. Factors controlling cracking of concrete affected by reinforcement corrosion[J]. Material and Structures, 1998, 31(7): 435- 441.
    [39] OH B H, KIM K H, JANG B S. Critical corrosion amount to cause cracking of reinforced concrete structures[J]. ACI Materials Journal, 2009, 106(4): 333-339.
    [40] LIU Y P, WEYERS R E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures[J]. ACI Materials Journal, 1998, 95(6): 675- 681.
    [41] ZHAO Y X, YU J, JIN W L. Damage analysis and cracking model of reinforced concrete structures with rebar corrosion[J]. Corrosion Science, 2011, 53(10): 3388-3397.
    [42] JANG B S, OH B H. Effects of non-uniform corrosion on the cracking and service life of reinforced concrete structures[J]. Cement and Concrete Research, 2010, 40(9): 1441-1450.
    [43] DU X, JIN L, ZHANG R. Modeling the cracking of cover concrete due to non-uniform corrosion of reinforcement[J].Corrosion Science,2014,89:189-202.
    [44] ALMUSALLAM A A, AL-GAHTANI A S, AZIZ A R, et al. Effect of reinforcement corrosion on bond strength[J]. Construction and Building Materials,1996,10(2): 123-129.
    [45] CABRERA J G. Deterioration of concrete due to reinforcement steel corrosion[J]. Cement and Concrete Composites,1996, 18(1): 47-59.
    [46] 张伟平,张誉. 锈胀开裂后钢筋混凝土粘结滑移本构关系研究[J]. 土木工程学报, 2001, 34(5): 40- 44. (ZHANG Weiping, ZHANG Yu. Bond-slip relationship between corroded steel bars and concrete[J]. China Civil Engineering Journal,2001, 34(5): 40- 44.(in Chinese))
    [47] KIVELL A, PALERMO A, SCOTT A. Complete model of corrosion-degraded cyclic bond performance in reinforced concrete[J]. Journal of Structural Engineering, 2015, 141(9):04014222.
    [48] HANJARI K Z, CORONELLI D, LUNDGREN K. Bond capacity of severely corroded bars with corroded stirrups[J]. Magazine of Concrete Research, 2011, 63(12): 953-968.
    [49] CORONELLI D, HANJARI K Z, LUNDGREN K. Severely corroded RC with cover cracking[J]. Journal of Structural Engineering, 2013, 139(2): 221-232.
    [50] VAL D V, CHERNIN L. Serviceability reliability of reinforced concrete beams with corroded reinforcement[J]. Journal of Structural Engineering, 2009, 135(8): 896-905.
    [51] 袁迎曙,余索. 锈蚀钢筋混凝土梁的结构性能退化[J]. 建筑结构学报, 1997, 18(4): 51-57. (YUAN Yingshu, YU Suo. Deterioration of structural behavior in corroded reinforced concrete beam[J]. Journal of Building Structures,1997,18(4):51-57.(in Chinese))
    [52] 王晓刚,顾祥林,张伟平. 锈蚀钢筋混凝土梁抗弯性能数值模拟[J]. 建筑科学与工程学报, 2009, 26(1): 49-54. (WANG Xiaogang, GU Xianglin, ZHANG Weiping. Numerical simulation of flexural behavior of corroded reinforced concrete beams[J]. Journal of Architecture and Civil Engineering, 2009, 26(1): 49-54.(in Chinese))
    [53] HIGGINS C, FARROW W C I, TURAN O T. Analysis of reinforced concrete beams with corrosion damaged stirrups for shear capacity[J]. Structure and Infrastructure Engineering, 2012, 8(11): 1080-1092.
    [54] ZHANG W P, YE Z W, GU X L, et al. Assessment of fatigue life for corroded reinforced concrete beams under uniaxial bending[J]. Journal of Structural Engineering, 2017, 143(7):04017048.
    [55] LI C Q, MELCHERS R E. Time-dependent risk assessment of structural deterioration caused by reinforcement corrosion[J]. ACI Structural Journal, 2005, 102(5): 754-762.
    [56] MORI Y, ELLINGWOOD B R. Reliability-based service-life assessment of aging concrete structures[J]. Journal of Structural Engineering, 1993, 119(5): 1600-1621.
    [57] 杨桂新,吴瑾,吴文操. 混凝土结构中钢筋腐蚀监测无线传感器[J]. 仪器仪表学报, 2009, 30(6): 1152-1157. (YANG Guixin, WU Jin, WU Wencao. Wireless sensor for monitoring the corrosion of reinforcement in concrete structures[J]. Chinese Journal of Scientific Instrument, 2009, 30(6): 1152-1157.(in Chinese))
    [58] FUHR P L, HUSTON D R. Corrosion detection in reinforced concrete roadways and bridges via embedded fiber optic sensors[J]. Smart Materials & Structures, 1998, 7(2): 217-228.
    [59] REISS R A, GALLAHER M. Evaluation of the VTI ECI-1 embedded corrosion instrument[R]. Sacramento, CA: California Department of Transportation, 2006.
    [60] SCHIERL P, RAUPACH M. Monitoring system for the corrosion risk for steel in concrete[J]. Concrete International,1992, 14(7): 52-55.
    [61] 徐建芝,丁铸,邢峰. 钢筋混凝土电化学脱盐修复技术研究现状[J]. 混凝土, 2008(9): 22-24.(XU Jianzhi, DING Zhu, XING Feng. Research status of electrochemical chloride extraction (ECE) on steel reinforced concrete[J]. Concrete, 2008(9): 22-24.(in Chinese))
    [62] 唐军务,李森林,蔡伟成,等. 钢筋混凝土结构电渗阻锈技术研究[J]. 海洋工程, 2008, 26(3): 83-88.(TANG Junwu, LI Senlin, CAI Weicheng, et al. Investigation of inhibitor electromigration anticorrosion technology on reinforced concrete[J]. The Ocean Engineering, 2008, 26(3): 83-88. (in Chinese))
    [63] 许晨,金伟良,章思颖. 氯盐侵蚀混凝土结构延寿技术初探Ⅰ: 模拟孔隙液中6种胺类有机物阻锈性能分析[J]. 建筑材料学报, 2014, 17(4): 572-578. (XU Chen, JIN Weiliang, ZHANG Siying. Preliminary study on service life extension of concrete structures under chloride environment: effectiveness of six amine-based inhibitors for steel in chloride-contaminated simulated concrete pore solutions[J]. Journal of Building Materials, 2014, 17(4): 572-578.(in Chinese))
    [64] QU W J, XIONG Y, LI G. Influencing factor of realkalization technique for carbonated concrete and study of its durability[J]. Journal of Building Materials, 2008, 11(1): 21-27.
    [65] CHEUNGMM S, CAO C.Application of cathodic protection for controlling macrocell corrosion in chloride contaminated RC structures[J]. Construction and Building Materials,2013,45: 199-207.
    [66] 金伟良,陈佳芸,毛江鸿,等. 电化学修复对钢筋混凝土结构服役性能的作用效应[J]. 工程力学, 2016, 33(2): 1-10. (JIN Weiliang, CHEN Jiayun, MAO Jianghong, et al. The effect of electrochemical rehabilitation on service performance of reinforced concrete structures[J]. Engineering Mechanics,2016, 33(2): 1-10. (in Chinese))
    [67] 邢锋,倪卓,汤皎宁,等. 自修复混凝土系统的研究进展[J]. 深圳大学学报(理工版), 2013, 30(5): 486- 494.(XING Feng,NI Zhuo,TANG Jiaoning, et al. State-of-the-art for self-healing concrete[J]. Journal of Shenzhen University (Science and Engineering),2013,30(5):486- 494.(in Chinese))
    [68] 崔迪,李宏男,宋钢兵. 形状记忆合金混凝土梁力学性能试验研究[J]. 工程力学, 2010, 27(2): 117-123. (CUI Di, LI Hongnan, SONG Gangbing. Behavior of SMA reinforced concrete beam[J]. Engineering Mechanics, 2010, 27(2): 117-123. (in Chinese))
    [69] 梁大开,李东升,潘晓文. 智能结构中光纤智能夹层力学特性的实验研究[J]. 应用力学学报, 2006, 23(1): 150-153. (LIANG Dakai, LI Dongsheng, PAN Xiaowen. Experimental research on mechanics characteristic of fiber optic smart layer in smart structure[J]. Chinese Journal of Applied Mechanics, 2006, 23(1): 150-153.(in Chinese))
    [70] WANG Y, FANG G, DING W, et al. Self-immunity microcapsules for corrosion protection of steel bar in reinforced concrete[J]. Scientific Reports, 2016:18484.
    [71] 匡亚川,欧进萍. 内置纤维胶液管钢筋混凝土梁裂缝自愈合行为试验和分析[J]. 土木工程学报, 2005,37(4): 53-59. (KUANG Yachuan, OU Jinping. Experiments and analyses of the self-healing of cracks in reinforced concrete beams with embedded fibers filed with adhesive[J]. China Civil Engineering Journal, 2005,37(4): 53-59. (in Chinese))
    [72] 欧进萍,侯爽,周道成,等. 钢筋混凝土结构预期使用期可靠度设计实用方法[J]. 建筑结构学报, 2008, 29(5): 120-127. (Ou Jinping, HOU Shuang, ZHOU Daocheng, et al. Practical reliability design approach for reinforced concrete structures with expected service time[J]. Journal of Building Structures, 2008, 29(5): 120-127. (in Chinese))
    [73] FRANGOPOL D M. Life-cycle performance, management, and optimisation of structural systems under uncertainty: accomplishments and challenges[J]. Structure and Infrastructure Engineering, 2011, 7(6): 389- 413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700