用户名: 密码: 验证码:
基于欧拉-拉格朗日方法的水下气体泄漏扩散行为研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on release and dispersion behavior of underwater gas based on Eulerian-Lagrangian approach
  • 作者:李新宏 ; 陈国明 ; 朱红卫 ; 畅元江
  • 英文作者:LI Xinhong;CHEN Guoming;ZHU Hongwei;CHANG Yuanjiang;Centre for Offshore Engineering and Safety Technology,China University of Petroleum(East China);
  • 关键词:水下气体 ; 羽流 ; 涌流效应 ; 气池 ; 欧拉-拉格朗日方法 ; 计算流体动力学
  • 英文关键词:underwater gas;;plume;;fountain effect;;gas pool;;Eulerian-Lagrangian approach;;computational fluid dynamics(CFD)
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:中国石油大学(华东)海洋油气装备与安全技术研究中心;
  • 出版日期:2019-02-18
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2019
  • 期:v.43;No.231
  • 基金:国家重点研发计划课题(2016YFC0802305)
  • 语种:中文;
  • 页:SYDX201901016
  • 页数:7
  • CN:01
  • ISSN:37-1441/TE
  • 分类号:136-142
摘要
针对水下气体泄漏扩散问题,基于计算流体动力学(CFD)理论采用流体体积模型(VOF)与离散相模型(DPM)耦合的方法,对气体在水中的扩散过程进行模拟与分析,水和空气作为连续相,泄漏气体作为离散相,离散相粒子与水下气泡具有相同的物理性质,其密度变化服从理想气体状态方程。基于建立的数值模型,研究水下气体羽流的形成和发展过程以及在水面形成的涌流效应,评估气体上浮时间、水面气池尺寸和涌流高度等参数。研究表明:泄漏气体以喷射状涌入水中,上升过程中体积逐渐膨胀增大,运动至水面时形成倒立的锥形羽流结构;气体带动表层水运动,引起羽流两侧表层水回流,在水面产生涌流效应和圆形的气池;涌流高度逐渐增大后呈小幅波动状发展,气池半径逐渐增大后稳定。仿真结果与小尺度实验数据对比验证了数值模型的可行性。
        Aiming to solve the leakage and diffusion of underwater gases,the diffusion of the gases were simulated based on CFD,by combining the VOF and DPM. Water and air are treated as the continuous phases,while bubbles are treated as the discrete phases. The discrete particles have the same physical properties with bubbles,and the particle density obeys the perfect gas state equation. By virtue of the numerical model,the formation and development process of underwater gas plume,as well as the free surface behavior were studied,and such key parameters as the rise time,gas pool size and fountain height were assessed. The present study indicates that gases spout into water when leakage happens,and the plume volume gradually increases during it approaches the free surface. The underwater gas plume with inverted cone structure is generated when the gas reaches the free surface. The superficial water movement is driven by gas diffusion from water into atmosphere,which forms a circular gas pool and water column on the sea surface. The height of the water column fluctuates after attaining to a peak value,and the radius of the gas pool keeps a stable value after reaching the maximum value. The feasibility of the numerical model is validated by comparing the simulation results with a small scale experiment.
引文
[1] LI Xinhong,CHEN Guoming,ZHU Hongwei,et al. Gas dispersion and deflagration above sea from subsea release and its impact on offshore platform[J]. Ocean Engineering,2018,163:157-168.
    [2]李新宏,陈国明,朱红卫,等.海底输气管道泄漏天然气扩散风险研究[J].石油科学通报,2016,1(3):390-400.LI Xinhong,CHEN Guoming,ZHU Hongwei,et al. Research into the risk of natural gas spread from submarine natural gas pipeline leakage[J]. Petroleum Science Bulletin,2016,1(3):390-400.
    [3] MCDOUGALL T J. Bubble plumes in stratified environments[J]. Journal of Fluid Mechanics,1978,85(4):655-672.
    [4] MILGRAM J H. Mean flow in round bubble plumes[J].Journal of Fluid Mechanics,1983,133:345-376.
    [5] FRIEDL M J,FANNELP T K. Bubble plumes and their interaction with the water surface[J]. Applied Ocean Research,2000,22(2):119-128.
    [6] YAPA P D,DASANAYAKA L K,BANDARA U C,et al. A model to simulate the transport and fate of gas and hydrates released in deepwater[J]. Journal of Hydraulic Research,2010,48(5):559-572.
    [7] PREMATHILAKE L T,YAPA P D,NISSANKA I D,et al. Impact on water surface due to deepwater gas blowouts[J]. Marine Pollution Bulletin,2016,112(1):365-374.
    [8] WIMALARATNE M R,YAPA P D,NAKATA K,et al.Transport of dissolved gas and its ecological impact after a gas release from deepwater[J]. Marine Pollution Bulletin,2015,100(1):279-288.
    [9] CLOETE S,OLSEN J E,SKJETNE P. CFD modeling of plume and free surface behavior resulting from a sub-sea gas release[J]. Applied Ocean Research,2009,31(3):220-225.
    [10] OLSEN J E,DUNNEBIER D,DAVIES E,et al. Mass transfer between bubbles and seawater[J]. Chemical Engineering Science,2017,161:308-315.
    [11]王志刚,孙克俐,刘海欣.关于水下管道气体泄漏的试验研究[J].港工技术,2013,50(1):52-54.WANG Zhigang,SUN Keli,LIU Haixin. Experimental study on gas leakage of underwater pipeline[J]. Port Engineering Technology,2013,50(1):52-54.
    [12]李新宏,朱红卫,陈国明,等.海底管道泄漏油气扩散规律数值仿真与对比分析[J].安全与环境学报,2017,17(2):608-614.LI Xinhong,ZHU Hongwei,CHEN Guoming,et al.CFD-based comparative analysis for the oil&gas dispersion behavior resulting from the submarine pipelineleakage[J]. Journal of Safety and Environment,2017,17(2):608-614.
    [13] LI Xinhong,CHEN Guoming,ZHU Hongwei. Modelling and assessment of accidental oil release from damaged subsea pipelines[J]. Marine Pollution Bulletin,2017,123(1/2):133-141.
    [14] XIA J L,AHOKAINEN T,HOLAPPA L. Analysis of flows in a ladle with gas-stirred melt[J]. Scandinavian Journal of Metallurgy,2001,30(2):69-76.
    [15] JOHANSEN,RYE H,MELBYE A G,et al. Deep spill JIP—experimental discharges of gas and oil at Helland Hansen[R]. Trondheim,Norway:SINTEF Applied Chemistry,2000.
    [16] ENGEBRETSEN T,NORTHUG T,SJEN K,et al.Surface flow and gas dispersion from a subsearelease of natural gas:in the Seventh International Offshore and Polar Engineering Conference[C]. Norway:International Society of Offshore and Polar Engineers,1997.
    [17]方娜,陈国明,朱红卫,等.海底管道泄漏事故统计分析[J].油气储运,2014,33(1):99-103.FANG Na,CHEN Guoming,ZHU Hongwei,et al. Statistical analysis of leakage accidents of submarine pipeline[J]. Oil&Gas Storageand Transportation,2014,33(1):99-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700