用户名: 密码: 验证码:
地下水环境影响评价中污染物运移模拟软件的适宜性评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Evaluation of Contaminant Transport Modeling Software for Groundwater Environmental Impact Assessment
  • 作者:张小茅 ; 周俊 ; 熊小锋 ; 齐硕 ; 施小清
  • 英文作者:ZHANG Xiaomao;ZHOU Jun;XIONG Xiaofeng;QI Shuo;SHI Xiaoqing;School of Earth Sciences and Engineering,Nanjing University;Appraisal Center for Environment and Engineering,Ministry of Environmental Protection of China;Institute of Karst Geology,Chinese Academy of Geological Sciences;
  • 关键词:地下水 ; 环境影响评价 ; 污染物运移 ; 模拟软件评估
  • 英文关键词:groundwater;;environmental impact assessment;;contaminant transport;;modeling software evaluation
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:南京大学地球科学与工程学院;环境保护部环境工程评估中心;中国地质科学院岩溶地质研究所;
  • 出版日期:2018-08-22 17:06
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.252
  • 基金:国家自然科学基金项目(No.41172206,41672229);; 环保部财政科研专项(No.1441100022)~~
  • 语种:中文;
  • 页:HJKX201901002
  • 页数:7
  • CN:01
  • ISSN:11-1827/X
  • 分类号:16-22
摘要
目前国内外已发展了一系列成熟的地下水污染物运移模拟软件,但是软件功能各异,易造成使用者的选择困扰.为满足HJ 610—2016《环境影响评价技术导则地下水环境》(简称"《导则》")中关于环境影响预测工作精细化的要求,对国内外常用饱和带和包气带污染物运移模拟软件的适宜性进行了评估.首先,针对三款常用饱和带污染物运移模拟软件BIOSCREEN、AT123D和MT3D,基于理想算例对比4组水动力条件设置下的计算结果,分析软件的适宜性;其次,针对《导则》中暂未给出的包气带污染物运移模拟软件,以FEMWATER为例探讨了包气带阻滞作用对于地下水环境影响评价的重要性.结果表明:(1)BIOSCREEN由于忽略了分子扩散作用,当Pe(Peclet数)为0. 25×10~(-3)时,其预测的污染源下游10 m处污染物浓度为AT123D和MT3D计算值的1. 8倍,存在高估污染风险的可能.(2)相比污染源直接设置于潜水面的情景,污染物从距潜水面11 m的地表泄露,经过包气带后污染源强降低了24%,下游85 m处污染物浓度达到0. 1 mg/L的时间延迟了390 d.(3)当地下水流速较慢,分子扩散作用相比对流作用占优势时,适用MT3D开展数值模拟或者采用AT123D进行解析预测;当对流作用占优势且水文地质条件接近解析解假设时,可利用BIOSCREEN粗估污染风险.研究显示,包气带污染物运移模拟软件有助于合理地预测污染物在地下水环境中的运移转化行为,从而更准确地估计污染源强和判定地下水环境污染风险.
        Currently,a series of groundwater contaminant transport modeling software have been developed both at home and abroad,but the functions of different programs are different,which makes them difficult for the users to select. In order to meet the meticulous requirements for environmental impact prediction in the ‘Technical Guidelines of Environmental Impact Assessment, Groundwater Environment'( HJ 610-2016),we evaluate the applicability of commonly used contaminant transport modeling software to saturated zones and vadose zones respectively. Firstly,for commonly used saturated zone contaminant transport modeling software BIOSCREEN,AT123 D and MT3 D,we evaluate their applicability by comparing their outputs of 4 sets of hydrodynamic conditions based on a synthetic saturated example. Secondly,For the vadose zone contaminant transport modeling software,which is not documented in the guidelines,we use FEMWATER as an example to discuss the importance of the retardation effect of vadose zones on the environmental impact assessment of groundwater. The results show that:( 1) Because BIOSCREEN ignores the molecular diffusion of solute,the predicted concentration of pollutants at 10 m downstream of the pollution source is 1. 8 times higher than that predicted by AT123 D and MT3 D with Pe of 0. 25×10~(-3),which may lead to overestimating the risk of contamination.(2) Compared with the scenario where the pollution source is directlyplaced above the phreatic surface,the pollution source intensity is reduced by 24% when the pollutant passes through the 11 m thick vadose zone and then reaches the phreatic surface,and the time is delayed 390 d when the concentration of the pollutant reaches 0. 1 mg/L at 85 m downstream of the pollution source.( 3) When the groundwater flow rate is slow and the molecular diffusion is superior to the convection effect,it is recommended to carry out numerical simulation with MT3 D or to use AT123 D for analytical prediction; when convection is dominant and hydrogeological conditions are close to the analytical solution hypothesis, it is recommended to use BIOSCREEN to roughly estimate the risk of pollution. The use of the vadose zone transport modeling software helps to reasonably predict the transport and transformation behavior of pollutants in the groundwater,thereby more accurately estimating the pollution source intensity and determining the risk of groundwater contamination.
引文
[1]环境保护部.HJ 61—2016环境影响评价技术导则地下水环境[S].北京:中国环境科学出版社,2016.
    [2] FETTER C W. Contaminant hydrogeology[M]. Illinois:Waveland Press,2008:39-48.
    [3] DOMENICO P A. An analytical model for multidimensional transport of a decaying contaminant species[J]. Journal of Hydrology,1987,91(1/2):49-58.
    [4]薛禹群,谢春红.地下水数值模拟[M].北京:科学出版社,2007:9-28.
    [5] KARANOVIC M,NEVILLE C J,ANDREWS C B. BIOSCREENAT:BIOSCREEN with an exact analytical solution[J]. Ground Water,2007,45(2):242-245.
    [6] US Environmental Protection Agency. AT123D-AT:analytical transient one-,two-,and three dimensional advanced technology computer code documentation and user's guide:version 3. 0[R].Washington DC:Ground Water and Ecosystems Restoration Division,2013:3-6.
    [7] SCHNEIKER R A. SEVIEW:Groundwater and vadose transport with AT123D and SESOIL,user's guide[R]. Wisconsin:Environmental Software Consultants,2014:4-7.
    [8] DELTARE S. DGPlume user manual 1. 7[R]. Delft:Deltares,2002:11-13.
    [9] ZHENG C M.MT3D,a modular three-dimensional transport model for simulation of advection,dispersion and chemical reaction of contaminants in groundwater systems[R]. Maryland:S.S.Papadopoulos&Associates InC,1990:1-4.
    [10]祝晓彬.地下水模拟系统(GMS)软件[J].水文地质工程地质,2003,30(5):53-55.ZHU Xiaobin.Groundwater modeling system(GMS)software[J].Hydrogeology&Engineering Geology,2003,30(5):53-55.
    [11]冯洁.可视化地下水数值模拟软件(Visual Modflow)在国内的应用[J].地下水,2013,35(4):34-36.FENG Jie.Application of visual modflow in groundwater numerical simulation model[J].Ground Water,2013,35(4):34-36.
    [12] LIN H C J,RICHARDS D R,YEH G T,et al. FEMWATER:a three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media[R].United States:Army Environmental Center,1997:1-10.
    [13] TREFRY M G,MUFFELS C. FEFLOW:a finite-element ground water flow and transport modeling tool[J].Ground Water,2007,45(5):525-528.
    [14] PRUESS K. TOUGH2:a general-purpose numerical simulator for multiphase fluid and heat flow[R]. California:Lawrence Berkeley Laboratory,1991:1-3.
    [15] YAMAMOTO H. Petrasim:a graphical user interface for the TOUGH2 family of multiphase flow and transport codes[J].Ground Water,2010,46(4):525-528.
    [16]陈崇希.“防止模拟失真,提高仿真性”是数值模拟的核心[J].水文地质工程地质,2003,30(2):1-5.CHEN Chongxi.‘To prevent model loss in reality and improve model accuracy’is the key of groundwater numerical modeling[J].Hydrogeology&Engineering Geology,2003,30(2):1-5.
    [17]薛禹群.中国地下水数值模拟的现状与展望[J].高校地质学报,2010,16(1):1-6.XUE Yuqun. Present situation and prospect of groundwater numerical simulation in China[J]. Geology Journal of China Universities,2010,16(1):1-6.
    [18] SCOTT S J. Fate and exposure models:selecting the appropriate model for a specific application:SESOIL and AT123D models[J].Journal of Soil Contamination,1998,7(3):301-309.
    [19]施小清,姜蓓蕾.FEMWATER在地下水流数值模拟中运用[J].工程勘察,2008(4):27-32.SHI Xiaoqing,JIANG Beilei. Application of FEMWATER in the groundwater simulation[J]. Geotechnical Investigation&Surveying,2008(4):27-32.
    [20] HUYSMANS M,DASSARGUES A. Review of the use of Péclet numbers to determine the relative importance of advection and diffusion in low permeability environments[J]. Hydrogeology Journal,2005,13(5):895-904.
    [21] LABOLLE E M,FOGG G E. Role of molecular diffusion in contaminant migration and recovery in an alluvial aquifer system[J].Transport in Porous Media,2001,42(1/2):155-179.
    [22] NIELSEN D R,VAN G M,BIGGAR J W. Water flow and solute transport processes in the unsaturated zone[J]. Water Resources Research,1986,22(9):89-108.
    [23]杨建锋,万书勤,邓伟,等.地下水浅埋条件下包气带水和溶质运移数值模拟研究述评[J].农业工程学报,2005,21(6):158-165.YANG Jianfeng,WAN Shuqin,DENG Wei,et al. Review of numerical simulation of soil water flow and solute transport in the presence of a water table[J]. Transactions of Chinese Society of Agricultural Engineering,2005,21(6):158-165.
    [24] SIMUNEK J,SAITO H,SAKAI M,et al.The HYDRUS-1D software package for simulating the one-dimensional movement of water,heat,and multiple solutes in variably saturated media[R].California:Department of Environmental Sciences University of California Riverside,2005:9-11.
    [25] VOSS C I,PROVOST A M. SUTRA:a model for 2D or 3D saturated-unsaturated,variable-density ground-water flow with solute or energy transport[R]. Colorado:U. S. Geological Survey,2002:1-2.
    [26] LAPPALA E G,HEALY R W,WEEKS E P. Documentation of computer program VS2D to solve the equations of fluid flow in variably saturated porous media[R]. Colorado:U. S. Geological Survey,1987:1-2.
    [27] ROSENBLOOM J,MOCK P,LAWSON P,et al. Application of VLEACH to vadose zone transport of VOCs at an arizona superfund site[J]. Groundwater Monitoring&Remediation,1993,13(3):159-169.
    [28] JARVIS N J,HOLLIS J M,NICHOLLS P H,et al.MACRO-DB:a decision-support tool for assessing pesticide fate and mobility in soils[J]. Environmental Modelling&Software,1997,12(2/3):251-265.
    [29] BOESTEN J,BUSINELLI M,DELMAS A,et al. FOCUS groundwater scenarios in the EU review of active substances[R].Washington DC:FOCUS Groundwater Scenarios Workgroup,2000:1-5.
    [30] DOMENICO P A,SCHWARTZ F W. Physical and chemical hydrogeology[M].Wiley:Jobn Wiley&Sons,Inc.,1990:103-108.
    [31] GEORGE Y. Users'manual:a finite element model of water flow through saturated-unsaturated porous media[R]. Maryland:Army Environmental Center,1999:62-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700