用户名: 密码: 验证码:
CFD-PBM耦合模型模拟气液鼓泡床的通用性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generality of CFD-PBM coupled model for simulations of gas-liquid bubble column
  • 作者:张华海 ; 王铁峰
  • 英文作者:ZHANG Huahai;WANG Tiefeng;Department of Chemical Engineering,Tsinghua University;
  • 关键词:鼓泡床 ; CFD-PBM耦合模型 ; 操作压力 ; 物性参数 ; 气含率
  • 英文关键词:bubble column;;CFD-PBM coupled model;;operating pressure;;physical properties;;gas holdup
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:清华大学化学工程系;
  • 出版日期:2019-01-03 10:57
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家重点研发计划项目(2017YFB0602500);; 国家自然科学基金项目(21476122)
  • 语种:中文;
  • 页:HGSZ201902009
  • 页数:9
  • CN:02
  • ISSN:11-1946/TQ
  • 分类号:67-75
摘要
通过对不同操作压力和不同液体性质气液鼓泡床的模拟值与实验数据进行对比,从而验证CFD-PBM耦合模型的通用性。结果表明,CFD-PBM耦合模型在加入了气泡破碎修正因子后,可以很好地预测压力对鼓泡床流体力学行为的影响趋势,当压力升高时,气含率显著升高。不同液体黏度和表面张力条件下CFD-PBM耦合模型的模拟结果与实验结果均吻合较好。随液体黏度增大,气泡破碎速率减小,气泡尺寸分布变宽,曳力显著下降,气含率随之降低。随表面张力减小,气泡破碎速率增大,气泡变小,气含率升高。CFD-PBM耦合模型具有很好的通用性,原因在于考虑了压力、液体黏度和表面张力对气泡聚并、破碎和气液相间作用力的影响。
        The generality of the CFD-PBM coupled model was studied by comparing the simulation results with experimental data under different operating pressures and liquid properties. The results show that the CFD-PBMcoupled model with the modified pressure factor obtained from the internal-flow bubble breakup model can wellpredict the influence trend of pressure on the hydrodynamics of bubble column. The gas holdup increasessignificantly with increasing pressure. In addition, the simulation results for different liquid viscosity and surfacetension are consistent with the experimental results. With increasing liquid viscosity, the bubble breakup ratedecreases, which leads to a wider bubble size distribution, lower drag correction factor and decreased gas holdup.As the surface tension decreases, the bubble breakup rate increases, which results in smaller bubbles and highergas holdup. The CFD-PBM coupling model has good versatility because it considers the effects of pressure, liquid viscosity and surface tension on bubble coalescence, fracture and gas-liquid interaction.
引文
[1] Anastasiou A D, Passos A D, Mouza A A. Bubble columns with fine pore sparger and non-Newtonian liquid phase:prediction of gas holdup[J]. Chemical Engineering Science, 2013, 98(19):331-338.
    [2] Wang T F, Wang J F, Jin Y. Slurry reactors for gas-to-liquid processes:a review[J]. Industrial&Engineering Chemistry Research, 2007, 46(18):5824-5847.
    [3] Jordan U, Schumpe A. The gas density effect on mass transfer in bubble columns with organic liquids[J]. Chemical Engineering Science, 2001, 56(21/22):6267-6272.
    [4] Basha O M, Aehabiague L, Abdel-wahab A, et al. FischerTropsch synthesis in slurry bubble column reactors:experimental investigations and modeling—a review[J]. International Journal of Chemical Reactor Engineering, 2015, 13(3):201-288.
    [5] Besagni G, Gallazzini L, Inzoli F. Effect of gas sparger design on bubble column hydrodynamics using pure and binary liquid phases[J]. Chemical Engineering Science, 2018, 176(2):116-126.
    [6] Besagni G, Inzoli F, De Guido G, et al. Gas holdup and flow regime transition in spider-sparger bubble column:effect of liquid phase properties[J]. Journal of Physics:Conference Series. IOP Publishing, 2017, 796(1):012041.
    [7] Wilkinson P M, Dierendonck L L. Pressure and gas density effects on bubble break-up and gas hold-up in bubble columns[J].Chemical Engineering Science, 1990, 45(8):2309-2315.
    [8] Gemello L, Plais C, Augier F, et al. Hydrodynamics and bubble size in bubble columns:effects of contaminants and spargers[J].Chemical Engineering Science, 2018, 184(20):93-102.
    [9] Joshi J B, Ranade V V. Computational fluid dynamics for designing process equipment:expectations, current status, and path forward[J]. Industrial&Engineering Chemistry Research,2003, 42(6):1115-1128.
    [10] Wang T F, Wang J F, Jin Y. A CFD-PBM coupled model for gasliquid flows[J]. AIChE Journal, 2006, 52(1):125-140.
    [11] Degaleesan S, Dudukovic M, Pan Y. Experimental study of gasinduced liquid-flow structures in bubble columns[J]. AIChE Journal, 2001, 47(9):1913-1931.
    [12] Lin T J, Tsuchiya K, Fan L S. Bubble flow characteristics in bubble columns at elevated pressure and temperature[J]. AIChE Journal, 1998, 44(3):545-560.
    [13] Chaumat H, Billet A M, Delmas H. Hydrodynamics and mass transfer in bubble column:Influence of liquid phase surface tension[J]. Chemical Engineering Science, 2007, 62(24):7378-7390.
    [14] Wilkinson P M, van Schayk A, Spronken J P M, et al. The influence of gas density and liquid properties on bubble breakup[J]. Chemical Engineering Science, 1993, 48(7):1213-1226.
    [15] Krishna R, van Baten J M. Eulerian simulations of bubble columns operating at elevated pressures in the churn turbulent flow regime[J]. Chemical Engineering Science, 2001, 56(21/22):6249-6258.
    [16] Sarhan A R, Naser J, Brooks G. CFD modeling of bubble column:influence of physico-chemical properties of the gas/liquid phases properties on bubble formation[J]. Separation and Purification Technology, 2018, 201(7):130-138.
    [17] Xing C T, Wang T F, Wang J F. Experimental study and numerical simulation with a coupled CFD-PBM model of the effect of liquid viscosity in a bubble column[J]. Chemical Engineering Science, 2013, 95(24):313-322.
    [18] Guo K Y, Wang T F, Liu Y F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1):116-127.
    [19] Xing C T, Wang T F, Guo K Y, et al. A unified theoretical model for breakup of bubbles and droplets in turbulent flows[J]. AIChE Journal, 2015, 61(4):1391-1403.
    [20] Andersson R, Andersson B. On the breakup of fluid particles in turbulent flows[J]. AIChE Journal, 2006, 52(6):2020-2030.
    [21] Ravelet F, Colin C, Risso F. On the dynamics and breakup of a bubble rising in a turbulent flow[J]. Physics of Fluids, 2011, 23(10):103301.
    [22] Yang G Y, Guo K Y, Wang T F. Numerical simulation of the bubble column at elevated pressure with a CFD-PBM coupled model[J]. Chemical Engineering Science, 2017, 170(1):251-262.
    [23] de Bertodano M L, Lahey R T, Jones O C. Development of a k-εmodel for bubbly two-phase flow[J]. Journal of Fluids Engineering, 1994, 116(1):128-134.
    [24] Liao Y, Lucas D. A literature review of theoretical models for drop and bubble breakup in turbulent dispersions[J]. Chemical Engineering Science, 2009, 64(15):3389-3406.
    [25] Hashemi S, Macchi A, Servio P. Gas-liquid mass transfer in a slurry bubble column operated at gas hydrate forming conditions[J]. Chemical Engineering Science, 2009, 64(16):3709-3716.
    [26] Rudkevitch D, Macchi A. Hydrodynamics of a high pressure threephase fluidized bed subject to foaming[J]. The Canadian Journal of Chemical Engineering, 2008, 86(3):293-301.
    [27] Urseanu M I, Guit R P M, Stankiewicz A, et al. Influence of operating pressure on the gas hold-up in bubble columns for high viscous media[J]. Chemical Engineering Science, 2003, 58(3/4/5/6):697-704.
    [28] Esmaeili A, Farag S, Guy C, et al. Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids[J]. Chemical Engineering Journal, 2016, 288(15):377-389.
    [29] Grund G, Schumpe A, Deckwer W D. Gas-liquid mass transfer in a bubble column with organic liquids[J]. Chemical Engineering Science, 1992, 47(13/14):3509-3516.
    [30] Wang T F, Wang J F, Jin Y. A novel theoretical breakup kernel function for bubbles/droplets in a turbulent flow[J]. Chemical Engineering Science, 2003, 58(20):4629-4637.
    [31] Solsvik J, Jakobsen H A. A review of the statistical turbulence theory required extending the population balance closure models to the entire spectrum of turbulence[J]. AIChE Journal, 2016, 62(5):1795-1820.
    [32] Guo K Y, Wang T F, Liu Y F, et al. CFD-PBM simulations of a bubble column with different liquid properties[J]. Chemical Engineering Journal, 2017, 329(1):116-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700