用户名: 密码: 验证码:
淬火温度对620 MPa级海洋工程用钢组织及性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of quenching temperature on microstructure and mechanical properties of a 620 MPa grade marine engineering steel
  • 作者:周成 ; 赵坦 ; 朱隆浩 ; 金耀辉 ; 李家安 ; 严玲 ; 张鹏 ; 王晓航
  • 英文作者:ZHOU Cheng;ZHAO Tan;ZHU Long-hao;JIN Yao-hui;LI Jia-an;YAN Ling;ZHANG Peng;WANG Xiao-hang;State Key Laboratory of Metal Material for Marine Equipment and Application;Iron and Steel Research Institute of ANGANG Group;
  • 关键词:淬火和回火 ; 显微组织 ; 力学性能 ; 海洋工程用钢
  • 英文关键词:quenching and tempering;;microstructure;;mechanical property;;marine engineering steel
  • 中文刊名:JSCL
  • 英文刊名:Transactions of Materials and Heat Treatment
  • 机构:海洋装备用金属材料及其应用国家重点实验室;鞍钢集团钢铁研究院;
  • 出版日期:2019-01-25
  • 出版单位:材料热处理学报
  • 年:2019
  • 期:v.40;No.223
  • 语种:中文;
  • 页:JSCL201901016
  • 页数:6
  • CN:01
  • ISSN:11-4545/TG
  • 分类号:118-123
摘要
研究了不同淬火温度对620 MPa超高强海洋工程用钢显微组织和力学性能的影响。结果表明:实验钢经两相区淬火+回火处理后的组织为板条状铁素体和回火索氏体,其强度较低,低温韧性较高,当使前驱体调整为马氏体时,导致铁素体板条束尺寸缩短和增宽,最终实验钢强度下降,低温冲击韧性变化不明显;实验钢经完全奥氏体相区淬火+回火处理后的组织为回火索氏体,其强度较高,低温冲击韧性较低,当调整前驱体为马氏体后,最终形成了更加细小均匀的回火索氏体组织,此时其强度变化不明显,但低温冲击韧性得到较大提升。
        Effect of quenching temperature on microstructure and mechanical properties of 620 MPa ultrahigh strength marine engineering steel was studied. The results show that the microstructure of the experimental steel after intercritical quenching and tempering treatment is lath-like ferrite and tempered sorbite, with low strength, and high toughness at low temperature. When the precursor is adjusted to martensite, after the same heat treatment, the size of ferrite lath beam is shortened and widened, and the strength of the experimental steel decreases, but the impact toughness at low temperature does not change obviously. The microstructure of the experimental steel after quenching in austenite region and tempering is tempered sorbite, which has higher strength and low impact toughness at low temperature; when the precursor is adjusted to martensite, a finer and more uniform tempered sorbite structure is obtained, and the strength change is not obvious, but the low temperature impact toughness is greatly improved.
引文
[1] 杨才福,苏航.高性能船舶及海洋工程用钢的开发[J].钢铁,2012,47(12):1-8.YANG Cai-fu,SU Hang.Research and development of high performance shipbuilding and marine engineering steel[J].Iron and Steel,2012,47(12):1-8.
    [2] Shinichi S,RyujiM,Tadashi O,et al.Steel products for shipbuilding[J].JFE Technical Report,2004,3(3):41.
    [3] 翁宇庆,杨才福,尚成嘉.低合金钢在中国的发展现状与趋势[J].钢铁,2011,46(9):1-10.WENG Yu-qing,YANG Cai-fu,SHANG Cheng-jia.State-of-the-art and development trends of HSLA steels in China[J].Iron and Steel,2011,46(9):1-10.
    [4] 赵捷.我国高品质船舶、海洋工程用钢研究进展[J].材料导报,2018(s1):428-431.ZHAO Jie.Progress on high quality ship steel and marine engineering steel in China[J].Materials Review,2018(s1):428-431.
    [5] 杜伟,李鹤林.海洋石油平台用钢的现状与发展趋势(一)[J].石油管材与仪器,2016,2(3):5-7.DU Wei,LI He-lin.Status and development trends of offshore platform steels I[J].Petroleum Tubular Goods and Instruments,2016,2(3):5-7.
    [6] Zhou W H,Guo H,Xie Z J,et al.Copper precipitation and its impact on mechanical properties in a low carbon microalloyed steel processed by a three-step heat treatment[J].Materials and Design,2014,63(21):42-49.
    [7] Hwang G C,Lee S,Yoo J,et al.Effect of direct quenching on microstructure and mechanical properties of copper-bearing high-strength alloy steels[J].Materials Science and Engineering A,1998,252:256-268.
    [8] Chang W S.Microstructure and mechanical properties of 780 MPa high strength steels produced by direct-quenching and tempering process[J].Journal of Materials Science,2002,37(10):1973-1979.
    [9] 黄维,高真凤,何立波,等.海洋平台用钢板品种发展及研发概况[J].上海金属,2013,35(4):53-58.HUANG Wei,GAO Zhen-feng,HE Li-bo.Varieties research and development status of steel plates used in marine offshore platform.Shanghai Metals,2013,35(4):53-58.
    [10] 狄国标,刘振宇,郝利强,等.海洋平台用钢的生产现状及发展趋势[J].机械工程材料,2008,32(8):1-3.DI Guo-biao,LIU Zhen-yu,HAO Li-qing,et al.Present production state and development tendency of offshore platform steels[J].Materials for Mechanical Engineering,2008,32(8):1-3.
    [11] 王传雅. 铁素体形态对低/中碳合金结构钢低温性能的影响[J]. 大连铁道学院学报,1990,11(1):82-88.WANG Chuan-ya. Influence of morphology of ferrite on low temperature properties of low/middle carbon constructional alloy steels[J]. Journal of Dalian Institute of Railway Technology,1990,11(1):82-88.
    [12] 张丕军,刘相华,王国栋. 针状铁素体/马氏体高强度低屈强比双相钢的EBSD 研究[J].东北大学学报:自然科学版, 2007, 28(1):57-59.ZHANG Pi-jun,LIU Xiang-hua,WANG Guo-dong. The EBSD study on an acicular ferrite/martensite dual-phase steel with high strength low yield ratio[J]. Journal of Northeastern University:Natural Science,2007,28(1):57-59.
    [13] 廖波,肖福仁. 针状铁素体管线钢组织及强韧化机理研究[J]. 材料热处理学报,2009,30(2):57-62.LIAO Bo,XIAO Fu-ren. Research on microstructure and strength-toughening mechanism of acicular ferrite pipeline steel[J]. Transactions of Materials and Heat Treatment,2009,30(2):57-62.
    [14] 由洋,王学敏,尚成嘉.奥氏体化温度对HSLA100高强度低合金钢组织及冲击韧性的影响[J].金属学报,2012,(11):1290-1298.YOU Yang,WANG Xue-min,SHANG Cheng-jia. Influence of austenizing temperature on the microstructure and inpact toughness of a high strength low alloy HSLA100 steel[J]. Acta Metallurgica Sinica,2012,(11):1290-1299.
    [15] 崔忠圻.金属学与热处理[M]. 北京:机械工业出版社,2000:280-286.
    [16] 任勇强,谢振家,张宏伟,等.前躯体组织对C-Mn-Si钢组织特征及力学行为的影响[J].金属学报,2013,49(12):1558-1566.REN Yong-qiang,XIE Zhen-jia,ZHANG Hong-wei,et al.Effect of precursor microstructure on morphology feature and mechanical property of C-Mn-Si steel[J].Acta Metallurgica Sinica,2013,49(12):1558-1566.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700