用户名: 密码: 验证码:
湖相细粒沉积岩纹层结构差异对可压裂性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks
  • 作者:熊周海 ; 操应长 ; 王冠 ; 梁超 ; 石晓明 ; 李明鹏 ; 付尧 ; 赵寿强
  • 英文作者:Xiong Zhouhai;Cao Yingchang;Wang Guanmin;Liang Chao;Shi Xiaoming;Li Mingpeng;Fu Yao;Zhao Shouqiang;School of Geosciences,China University of Petroleum;Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology;Petrochina Research Institute of Petroleum Exploration and Development;Baishan Seismostation;Qingdao Jiahang Petroleum Technology Company Limited;
  • 关键词:纹层结构 ; 细粒沉积岩 ; 可压裂性 ; 连续性 ; 控制机理
  • 英文关键词:laminar structure;;fine-grained sedimentary rocks;;fracability;;continuity;;controlling mechanism
  • 中文刊名:SYXB
  • 英文刊名:Acta Petrolei Sinica
  • 机构:中国石油大学地球科学与技术学院;海洋国家实验室海洋矿产资源评价与探测技术功能实验室;中国石油勘探开发研究院;白山市地震台;青岛嘉航石油科技有限公司;
  • 出版日期:2019-01-15
  • 出版单位:石油学报
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(No.41572123和U1762217);; 国家科技重大专项(2016ZX05024-003和2016ZX05006-003);; 山东省自然科学基金项目(ZR2014DM013);; 国家自然科学基金青年科学基金项目(No.41602142);; 中国石油大学(华东)研究生创新基金项目(18CX06022A)资助
  • 语种:中文;
  • 页:SYXB201901006
  • 页数:12
  • CN:01
  • ISSN:11-2128/TE
  • 分类号:78-89
摘要
细粒沉积岩纹层结构(如纹层发育程度、厚度大小、厚度差异性和连续度)是影响岩石力学性质以及裂缝扩展的内在因素。通过对中国东部中生代—新生代的湖相细粒沉积岩开展研究,以常规三轴实验和断裂韧性实验为基础,结合图像分析和处理技术,分析了不同纹层结构与岩石力学参数之间的对应关系,综合评价了湖相细粒沉积岩纹层结构差异对可压裂性的影响。研究表明,细粒沉积岩的可压裂性指数与纹层数量、连续度呈负相关,但与纹层厚度方差、颗粒垂向分布方差呈正相关。纹层发育且连续性强的细粒沉积岩,其塑性较强,压裂缝以沿纹层界面或塑性纹层(黏土纹层或有机质纹层)扩展为主,裂缝易再次闭合,从而导致岩石的可压裂性降低。纹层厚度差异性较大、颗粒垂向分布均匀度较高的细粒沉积岩,其脆性较高,在压裂过程中易形成复杂有效的网状缝,从而提高岩石的可压裂性。此外,细粒沉积岩组分、颗粒结构以及成岩作用对可压裂性也具有重要的控制作用。
        Laminar structures of fine-grained sedimentary rocks(e.g.,laminar development degree,thickness,thickness difference and continuity)are intrinsic factors affecting the mechanical properties of rocks and crack propagation.Taking the Mesozoic-Cenozoic lacustrine fine-grained sedimentary rocks of Eastern China as an example,the corresponding relationship between different laminar structures and mechanics parameters of rocks is analyzed based on the conventional triaxial test and fracture toughness experiment in combination with image analysis and processing technology.Meanwhile,this paper comprehensively evaluates the influence of the laminar structure difference of lacustrine fine-grained sedimentary rocks on the fracability.The results show that the fracability index of fine-grained sedimentary rocks is negatively correlated with the quantity and continuity of laminae,while positively correlated with the laminar thickness variance and the vertical distribution variance of grains.The developed fine-grained sedimentary rocks with strong continuity show excellent plasticity.The compressive fractures are mainly extended along the lamina interface or the laminae with certain plasticity(e.g.,clay lamina or organic lamina),easy to close again in the fine-grained sedimentary rocks,thus reducing the fracability of rock.The fine-grained sedimentary rocks with large difference in thickness and high homogeneity of laminar vertical distribution have high brittleness,which is beneficial to the development of complex and effective mesh fractures in fracturing process,thus improving the fracability of rocks.In addition,the composition,particle texture and diagenesis of fine-grained sedimentary rocks also play an important role in controlling the fracability.
引文
[1]胡钦红,刘惠民,黎茂稳,等.东营凹陷沙河街组页岩油储集层润湿性、孔隙连通性和流体—示踪剂运移[J].石油学报,2018,39(3):278-289.HU Qinhong,LIU Huimin,LI Maowen,et al.Wettability,pore connectivity and fluid-tracer migration in shale oil reservoirs of Paleogene Shahejie Formation in Dongying sag of Bohai Bay Basin,East China[J].Acta Petrolei Sinica,2018,39(3):278-289.
    [2]吴靖,姜在兴,潘悦文,等.湖相细粒沉积模式——以东营凹陷古近系沙河街组四段上亚段为例[J].石油学报,2016,37(9):1080-1089.WU Jing,JIANG Zaixing,PAN Yuewen,et al.Lacustrine finegrained depositional model:a case study of the upper submember of the fourth Member of Paleogene Shahejie Formation in Dongying sag[J].Acta Petrolei Sinica,2016,37(9):1080-1089.
    [3]王勇,刘惠民,宋国奇,等.湖相泥页岩中碳酸盐成因及页岩油气地质意义——以东营凹陷沙河街组四段上亚段—沙河街组三段下亚段烃源岩为例[J].石油学报,2017,38(12):1390-1400.WANG Yong,LIU Huimin,SONG Guoqi,et al.Carbonate genesis and geological significance of shale hydrocarbon in lacustrine facies mud shale:a case study of source rocks in the upper submember of Member 4 and lower submember of Member 3 of Shahejie Formation,Dongying sag[J].Acta Petrolei Sinica,2017,38(12):1390-1400.
    [4]张顺,王永诗,刘惠民,等.渤海湾盆地东营凹陷细粒沉积微相对页岩油储层微观结构的控制作用[J].石油与天然气地质,2016,37(6):923-934.ZHANG Shun,WANG Yongshi,LIU Huimin,et al.Controlling effect of fine-grained sedimentary microfacies upon the microstructure of shale oil reservoirs in the Dongying sag,Bohai Bay Basin[J].Oil&Gas Geology,2016,37(6):923-934.
    [5]耿志强.柴西北部盐湖相细粒沉积岩储集物性研究[D].北京:中国地质大学,2016.GENG Zhiqiang.Research on reservoir property of fine-grained sedimentary rock in saline lake phase in Northwest Qaidam Basin[D].Beijing:China University of Geosciences,2016.
    [6]张旭.柴达木盆地西北区新近系细粒沉积岩油气储集特征与成岩演化研究[D].北京:中国地质科学院,2017.ZHANG Xu.Research on reservoir characteristics and diagenesis evolution of the Neogene fine-grained sedimentary rocks in the northwestern Qaidam Basin[D].Beijing:Chinese Academy of Geologecal Sciences,2017.
    [7]孙善勇,刘惠民,操应长,等.湖相深水细粒沉积岩米兰科维奇旋回及其页岩油勘探意义——以东营凹陷牛页1井沙四上亚段为例[J].中国矿业大学学报,2017,46(4):846-858.SUN Shanyong,LIU Huimin,CAO Yingchang,et al.Milankovitch cycle of lacustrine deepwater fine-grained sedimentary rocks and its significance to shale oil:a case study of the upper Es4 Member of Well NY1 in Dongying sag[J].Journal of China University of Mining&Technology,2017,46(4):846-858.
    [8]陆程,刘雄,程敏华,等.页岩气体积压裂水平井产能影响因素研究[J].特种油气藏,2014,21(4):108-112.LU Cheng,LIU Xiong,CHENG Minhua,et al.Research on factors influencing shale gas productivity of volumetric fractured horizontal wells[J].Special Oil&Gas Reservoirs,2014,21(4):108-112.
    [9]唐颖,邢云,李乐忠,等.页岩储层可压裂性影响因素及评价方法[J].地学前缘,2012,19(5):356-363.TANG Ying,XING Yun,LI Lezhong,et al.Influence factors and evaluation methods of the gas shale fracability[J].Earth Science Frontiers,2012,19(5):356-363.
    [10]王冠民,熊周海,张婕.岩性差异对泥页岩可压裂性的影响分析[J].吉林大学学报:地球科学版,2016,46(4):1080-1089.WANG Guanmin,XIONG Zhouhai,ZHANG Jie.The impact of lithology differences to shale fracturing[J].Journal of Jilin University:Earth Science Edition,2016,46(4):1080-1089.
    [11] CHONG K K,GRIESER W V,PASSMAN A,et al.A completions guide book to shale-play development:a review of successful approaches toward shale-play stimulation in the last two decades[R].SPE133874,2010.
    [12] MULLEN M J,ENDERLIN M B.Fracability index-More than rock properties[R].SPE159755,2012.
    [13] LEKHNITSKII S G,FERN P,BRANDSTATTER J J,et al.Theory of elasticity of an anisotropic elastic body[J].Physics Today,1964,17(1):84.
    [14] SALAMON M D G.Elastic moduli of a stratified rock mass[J].International Journal of Rock Mechanics and Mining Sciences&Geomechanics Abstracts,1968,5(6):519-527.
    [15]赵平劳.层状岩石抗压强度围压效应各向异性研究[J].兰州大学学报:自然科学版,1993,29(1):105-109.ZHAO Pinglao.Anisotropy study on confining pressure,effect about compressive strength of bedded rock[J].Journal of Lanzhou University:Natural Sciences,1993,29(1):105-109.
    [16] HUBBERT M K,WILLIS D G.Mechanics of hydraulic fracturing[J].AIME Petroleum Transactions,1957,210:153-168.
    [17] HAIMSON B.Initiation and extension of hydraulic fractures in rocks[J].Society of Petroleum Engineers Journal,1967,7(3):310-318.
    [18]黄荣樽.地层破裂压力预测模式的探讨[J].华东石油学院学报,1984(4):335-347.HUANG Rongzun.A model for predicting formation fracture pressure[J].Journal of the University of Petroleum,China,1984(4):335-347.
    [19]门晓溪,唐春安,马天辉.水压致裂作用下岩体参数对裂纹扩展影响的数值模拟[J].东北大学学报:自然科学版,2013,34(5):700-703.MEN Xiaoxi,TANG Chunan,MA Tianhui.Numerical simulation on influence of rockmass parameters on fracture propagation during hydraulic fracturing[J].Journal of Northeastern University:Natural Science,2013,34(5):700-703.
    [20]代树红,王召,潘一山,等.水力压裂作用下裂隙在层状岩体内的扩展特征[J].地球物理学进展,2014,29(5):2370-2375.DAI Shuhong,WANG Zhao,PAN Yishan,et al.Study on characteristics of crack propagation in stratified rock under the force of hydraulic fracturing[J].Progress in Geophysics,2014,29(5):2370-2375.
    [21] KIM J,MORIDIS G J.Numerical analysis of fracture propagation during hydraulic fracturing operations in shale gas systems[J].International Journal of Rock Mechanics and Mining Sciences,2015,76:127-137.
    [22]梁正召,唐春安,李厚祥,等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.LIANG Zhengzhao,TANG Chunan,LI Houxiang,et al.A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression[J].Rock and Soil Mechanics,2005,26(1):57-62.
    [23]刘恺德,刘泉声,朱元广,等.考虑层理方向效应煤岩巴西劈裂及单轴压缩试验研究[J].岩石力学与工程学报,2013,32(2):308-316.LIU Kaide,LIU Quansheng,ZHU Yuanguang,et al.Experimental study of coal considering directivity effect of bedding plane under brazilian splitting and uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(2):308-316.
    [24]姚池,李瑶,姜清辉,等.应力作用下软硬互层岩石破裂过程的细观模拟[J].岩石力学与工程学报,2015,34(8):1542-1551.YAO Chi,LI Yao,JIANG Qinghui,et al.Mesoscopic model of failure process of interlayered rock under compression[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(8):1542-1551.
    [25]张桂民,李银平,杨长来,等.软硬互层盐岩变形破损物理模拟试验研究[J].岩石力学与工程学报,2012,31(9):1813-1820.ZHANG Guimin,LI Yinping,YANG Changlai,et al.Physical simulation of deformation and failure mechanism of soft and hard interbedded salt rocks[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(9):1813-1820.
    [26]李庆辉,陈勉,金衍.含气页岩破坏模式及力学特性的试验研究[J].岩石力学与工程学报,2012,31(S2):3763-3771.LI Qinghui,CHEN Mian,JIN Yan.Experimental research on failure modes and mechanical behaviors of gas-bearing shale[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(S2):3763-3771.
    [27] XU Dan,HU Ruilin,GAO Wei,et al.Effects of laminated structure on hydraulic fracture propagation in shale[J].Petroleum Exploration and Development,2015,42(4):573-579.
    [28]余永强,胡明研,杨小林,等.层状复合岩体相似模拟的试验研究[J].金属矿山,2009(1):21-24.YU Yongqiang,HU Mingyan,YANG Xiaolin,et al.Similarity simulation of bedded composite rock[J].Metal Mine,2009(1):21-24.
    [29]王迎春,陈剑.红层软岩微观结构与抗剪强度关系实验分析[J].现代地质,2013,27(3):738-742.WANG Yingchun,CHEN Jian.Preliminary research on the relationship between microscopic structure and shear strength of redbed soft rocks[J].Geoscience,2013,27(3):738-742.
    [30]刘珊.结构性黏土力学特性与微观形态试验研究[D].徐州:中国矿业大学,2014.LIU Shan.Experimental study on mechanical properties and micro-structure of structural clay[D].Xuzhou:China University of Mining and Technology,2014.
    [31]孙成才.陆相煤系泥岩微观组构及其力学特性关联性研究[D].徐州:中国矿业大学,2015.SUN Chengcai.Association study on micro fabric and mechanical properties of terrestrial coal series mudstone[D].Xuzhou:China University of Mining and Technology,2015.
    [32]彭春耀.层状页岩水力压裂裂缝与岩体弱面的干扰机理研究[J].石油钻探技术,2014,42(4):32-36.PENG Chunyao.Mechanism of interaction between hydraulic fractures and weak plane in layered shale[J].Petroleum Drilling Techniques,2014,42(4):32-36.
    [33]张冲,谢润成,姚勇,等.深层致密砂岩储层岩石结构面微观力学行为特征[J].断块油气田,2014,21(5):560-563.ZHANG Chong,XIE Runcheng,YAO Yong,et al.Micro-mechanical behavior characteristics of rock structure surface for deep tight sandstone reservoir[J].Fault-Block Oil&Gas Field,2014,21(5):560-563.
    [34]吴涛.页岩气层岩石脆性影响因素及评价方法研究[D].成都:西南石油大学,2015.WU Tao.Shale gas reservoir rocks and factors affecting the fragility evaluation method[D].Chengdu:Southwest Petroleum University,2015.
    [35]赵文韬,侯贵廷,张居增,等.层厚与岩性控制裂缝发育的力学机理研究——以鄂尔多斯盆地延长组为例[J].北京大学学报:自然科学版,2015,51(6):1047-1058.ZHAO Wentao,HOU Guiting,ZHANG Juzeng,et al.Study on the development law of structural fractures of Yanchang Formation in Longdong area,Ordos Basin[J].Acta Scientiarum Naturalium Universitatis Pekinensis,2015,51(6):1047-1058.
    [36] HOWELL J V.Glossary of geology and related sciences:a cooperative project of the American Geological Institute[M].Washington DC:American Geological Institute,1960:99-102.
    [37]刘恩龙,沈珠江.岩土材料的脆性研究[J].岩石力学与工程学报,2005,24(19):3449-3453.LIU Enlong,SHEN Zhujiang.Study on brittleness of geomaterials[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(19):3449-3453.
    [38]王鹏,纪友亮,潘仁芳,等.页岩脆性的综合评价方法:以四川盆地W区下志留统龙马溪组为例[J].天然气工业,2013,33(12):48-53.WANG Peng,JI Youliang,PAN Renfang,et al.A comprehensive evaluation methodology of shale brittleness:a case study from the Lower Silurian Longmaxi Fm in Block W,Sichuan Basin[J].Natural Gas Industry,2013,33(12):48-53.
    [39] GOKTAN R M,YILMAZ N G.A new methodology for the analysis of the relationship between rock brittleness index and drag pick cutting efficiency[J].The Journal of the South African Institute of Mining and Metallurgy,2005,105(10):727-733.
    [40]隋丽丽,杨永明,杨文光,等.胜利油田东营凹陷区页岩可压裂性评价[J].煤炭学报,2015,40(7):1588-1594.SUI Lili,YANG Yongming,YANG Wenguang,et al.Comprehensive evaluation of shale fracability in Dongying subsidencezone of Shengli oilfield[J].Journal of China Coal Society,2015,40(7):1588-1594.
    [41]袁俊亮,邓金根,张定宇,等.页岩气储层可压裂性评价技术[J].石油学报,2013,34(3):523-527.YUAN Junliang,DENG Jingen,ZHANG Dingyu,et al.Fracability evaluation of shale-gas reservoirs[J].Acta Petrolei Sinica,2013,34(3):523-527.
    [42]郭天魁,张士诚,葛洪魁.评价页岩压裂形成缝网能力的新方法[J].岩土力学,2013,34(4):947-954.GUO Tiankui,ZHANG Shicheng,GE Hongkui.A new method for evaluating ability of forming fracture network in shale reservoir[J].Rock and Soil Mechanics,2013,34(4):947-954.
    [43]刘奎,王宴滨,高德利,等.页岩气水平井压裂对井筒完整性的影响[J].石油学报,2016,37(3):406-414.LIU Kui,WANG Yanbin,GAO Deli,et al.Effects of hydraulic fracturing on horizontal wellbore for shale gas[J].Acta Petrolei Sinica,2016,37(3):406-414.
    [44]李勇,陈瑶,靳建洲,等.页岩气井体积压裂条件下的水泥环界面裂缝扩展[J].石油学报,2017,38(1):105-111.LI Yong,CHEN Yao,JIN Jianzhou,et al.Cement ring interface crack propagation under volume fracturing in shale gas well[J].Acta Petrolei Sinica,2017,38(1):105-111.
    [45] RICKMAN R,MULLEN M J,PETER J E,et al.A practical use of shale petrophysics for stimulation design optimization:all shale plays are not clones of the Barnett shale[R].SPE115258,2008.
    [46]陈勉,金衍,袁长友.围压条件下岩石断裂韧性的实验研究[J].力学与实践,2001,23(4):32-35.CHEN Mian,JIN Yan,YUAN Changyou.Study on the experiment for fracture toughness under confining pressure[J].Mechanics in Engineering,2001,23(4):32-35.
    [47]杜鸿善,贾璋.实验数据的统计检验及其处理[J].原子能科学技术,1987,21(4):397-403.DU Hongshan,JIA Zhang.Statistic inspection and mathematical treatment of experimental data[J].Atomic Energy Science and Technology,1987,21(4):397-403.
    [48]熊周海,操应长,王冠民,等.湖相细粒沉积岩成分对可压裂性的控制作用[J].中国矿业大学学报,2018,47(3):538-548.XIONG Zhouhai,CAO Yingchang,WANG Guanmin,et al.Controling effect of lacustrine fine-grained sedimentary rocks composition on fracability[J].Journal of China University of Mining&Technology,2018,47(3):538-548.
    [49] GRIFFITH A A.The phenomena of rupture and flow in solids[J].Philosophical Transactions of the Royal Society of London,1921,221:163-198.
    [50]徐世烺.混凝土断裂力学[M].北京:科学出版社,2011:18-140.XU Shilang.Fracture mechanics of concrete[M].Beijing:Science Press,2011:18-140.
    [51]朱乃龙,饶云刚,余舟波.脆性材料统计断裂判据的研究[J].工程力学,2009,26(5):47-51.ZHU Nailong,RAO Yungang,YU Zhoubo.Study on criterion of statistical fracture for brittle materials[J].Engineering Mechanics,2009,26(5):47-51.
    [52] OROWAN E.Fracture and strength of solids[J].Reports on Progress in Physics,1949,12(1):185-232.
    [53]李世愚.岩石断裂力学导论[M].合肥:中国科学技术大学出版社,2010:157-200.LI Shiyu.Introduction of rock fracture mechanics[M].Hefei:University of Science&Technology China Press,2010:157-200.
    [54]琚宏昌,陈国荣,夏晓舟.骨料形状对混凝土拉伸强度的影响[J].河海大学学报:自然科学版,2008,36(4):554-558.QU Hongchang,CHEN Guorong,XIA Xiaozhou.Influence of aggregate shape on tensile strength of concrete[J].Journal of Hohai University:Natural Sciences,2008,36(4):554-558.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700