用户名: 密码: 验证码:
水泥水化响应纳米材料的制备及性能评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation and performance evaluation of cement hydration responsive nanomaterial
  • 作者:刘加平 ; 穆松 ; 蔡景顺 ; 姜骞
  • 英文作者:LIU Jiaping;MU Song;CAI Jingshun;JIANG Qian;School of Materials Science and Engineering, Southeast University;State Key Laboratory of High Performance Civil Engineering Materials;Sobute New Materials Co., Ltd;
  • 关键词:混凝土 ; 纳米材料 ; 耐久性 ; 渗透性能 ; 反应机理 ; 工程应用
  • 英文关键词:concrete;;nanomaterial;;durability;;permeability performance;;reaction mechanism;;engineering application
  • 中文刊名:JZJB
  • 英文刊名:Journal of Building Structures
  • 机构:东南大学材料科学与工程学院;高性能土木工程材料国家重点实验室;江苏苏博特新材料股份有限公司;
  • 出版日期:2018-10-24 10:14
  • 出版单位:建筑结构学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点基础研究发展计划(973计划)项目(2015CB655105);; 江苏省自然科学基金项目(BK20161101,BK20160104,BK20171111)
  • 语种:中文;
  • 页:JZJB201901023
  • 页数:7
  • CN:01
  • ISSN:11-1931/TU
  • 分类号:185-191
摘要
近年来,纳米材料改性技术已成为提升混凝土耐久性的发展方向,但传统纳米材料难分散、易团聚的特征导致混凝土工作性问题。针对上述传统纳米材料的问题,设计与制备了具备水溶性特征、可在水泥水化环境中自响应,且与Ca~(2+)原位反应形成纳米有机酸钙盐颗粒的新型纳米材料,研究了该纳米材料的构效关系及其对混凝土性能的影响,分析了提高混凝土耐久性的作用机理,介绍了该材料在实际工程中的应用情况。结果表明:与传统纳米材料不同,水化响应材料对混凝土工作性能和干燥收缩基本不产生影响;掺加0.9%的水化响应材料可实现混凝土氯离子电迁移系数与吸水率的显著降低,降幅达到50%以上。
        In recent years, nanomaterial modification technology has become the development direction of improving the durability of concrete. However, the use of traditional nanomaterials may lead to workability issues of the concrete due to their dispersion difficulty and agglomeration. To address the problems of the traditional nanomaterials, the present research designed and prepared a new nanomaterial which has a characteristic of water-solubility, and can respond in the environment of cement hydration and react with Ca~(2+) to form organic acid calcium based nano particles. The present research studied the structure-function relationship of the new nanomaterial and its effect on the concrete performance. Besides, the mechanism of concrete durability improvement when using the new nanomaterial was discussed in the paper. In the end, the application of this material in practical engineering was briefly introduced. The results show that the new nanomaterial has slight influence on workability and autogenous shrinkage of concrete, which is different from the results of traditional nanomaterials, and the addition of 0.9% of the new nanomaterial with respect to the binder content can significantly reduce the chloride migration coefficient and water absorption rate of concrete by 50%.
引文
[1] WEE T H, LIM S N. Autogenous shrinkage of ground-granulated blast-furnace slag concrete[J]. ACI Materials Journal, 2000, 97(5):587-593.
    [2] 朱艳芳,王培铭. 大掺量粉煤灰混凝土的抗碳化性能研究[J]. 建筑材料学报,1999,2(4):319-323. (ZHU Yanfang, WANG Peiming. Research on carbonation resistance of concrete containing large amount of fly ash[J]. Journal of Building Materials, 1999,2(4):319-323.(in Chinese))
    [3] 周立霞. 西北戈壁地区高性能混凝土耐久性研究[D]. 兰州:兰州交通大学,2011. (ZHOU Lixia. Study on durability of high performance concrete in the gebi area of Northwest China[D]. Lanzhou: Lanzhou Jiaotong University, 2011.(in Chinese))
    [4] RAKI L, BEAUDOIN J, ALIZADEH R, et al. Cement and concrete nanoscience and nanotechnology[J]. Materials, 2010,3 (2): 918-942.
    [5] LAND G, STEPHAN D. Controlling cement hydration with nanoparticles[J]. Cement & Concrete Composites, 2015,57 (3): 64- 67.
    [6] PACHECO-TORGAL F, MIRALDO S, DING Y, et al. Targeting HPC with the help of nanoparticles: an overview[J]. Construction and Building Materials, 2013,38 (2): 365-370.
    [7] OLTULU M, SAHIN R. Single and combined effects of nano-SiO2, nano-Al2O3 and nano-Fe2O3 powders on compressive strength and capillary permeability of cement mortar containing silica fume[J]. Materials Science and Engineering: A: Structural Materials Properties Microstructure and Processing, 2011, 528 (22/23): 7012-7019.
    [8] ZHANG M H, LI H. Pore structure and chloride permeability of concrete containing nano-particles for pavement[J]. Construction & Building Materials, 2011, 25(2):608- 616.
    [9] 刘军, 邢锋, 董必钦,等. 混凝土的微观孔结构及对渗透性能的影响[J]. 混凝土, 2009(2):32-34. (LIU Jun, XING Feng, DONG Binqin, et al. Influence of micro-pore structure on the permeability of concrete[J]. Concrete,2009(2): 32-34.(in Chinese))
    [10] ZHANG P, WAN J, WANG K, et al. Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: a state-of-the-art review[J]. Construction & Building Materials, 2017, 148:648- 658.
    [11] 李固华. 纳米材料对混凝土耐久性的影响[D]. 成都: 西南交通大学, 2006.(LI Guhua. Effect of nano-materials on durability of concrete[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese))
    [12] BASHEER L, BASHEER M, LONG A. A proposal for the use of partial factors for durability of concrete in terms of air permeability and sorptivity[J]. Mediterranean Journal of Nutrition & Metabolism, 2006, 3(1):71-80.
    [13] JALAL M, POULADKHAN A R, NOROUZI H, et al. Chloride penetration, water absorption and electrical resistivity of high performance concrete containing nano silica and silica fume[J]. Journal of American Science,2012, 8 (4): 278-284.
    [14] ZHANG M H, WANG H G. Strength and drying shrinkage of pavement concrete with nano-particles[J]. Advanced Materials Research, 2013, 662:182-185.
    [15] VARGHESE L, RAO V K, PARAMESWARAN L. Effect of nanosilica on drying shrinkage and creep properties of cement concrete[J]. Advanced Materials Proceedings, 2017, 2(1): 56- 60.
    [16] RIXOM M R, MAILVAGANAM N P. Chemical admixtures for concrete[J].ACI Materials Journal,1999, 86(3): 297-327.
    [17] ALLYN M, FRANTZ G C. Corrosion tests with concrete containing salts of alkenyl-substituted succinic acid[J]. ACI Materials Journal, 2001, 98(3):224-232.
    [18] 徐迅, 卢忠远. 纳米二氧化硅对硅酸盐水泥水化硬化的影响[J]. 硅酸盐学报, 2007, 35(4):478- 484. (XU Xun, LU Zhongyuan. Effect of nano-silicon dioxide on hydration and hardening of Portland cement[J]. Journal of the Chinese Ceramic Society, 2007, 35(4): 478- 484. (in Chinese))

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700