用户名: 密码: 验证码:
聚醚醚酮/双相生物陶瓷复合材料包裹血管内皮生长因子修复下颌骨缺损
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polyetheretherketone/biphasic bioceramic composite coated with vascular endothelial growth factor to repair mandibular defects
  • 作者:余和东 ; 陈永吉 ; 毛敏 ; 陈绍娟 ; 倪小兵 ; 冷卫东 ; 罗杰
  • 英文作者:Yu Hedong;Chen Yongji;Mao Min;Chen Shaojuan;Ni Xiaobing;Leng Weidong;Luo Jie;Department of Stomatology,Taihe Hospital (Affiliated Hospital of Hubei University of Medicine);Department of Stomatology,Taihe Hospital((Affiliated Hospital of Hubei University of Medicine));Department of Neurosurgery,Taihe Hospital (Affiliated Hospital of Hubei University of Medicine);
  • 关键词:陶瓷制品 ; 血管内皮生长因子 ; 组织工程 ; 血管内皮生长因子 ; 聚醚醚酮 ; 生物陶瓷 ; 骨缺损 ; 生物材料 ; 国家自然科学基金
  • 英文关键词:,Ceramics;;Vascular Endothelial Growth Factors;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:十堰市太和医院(湖北医药学院附属医院)口腔医学中心;十堰市太和医院(湖北医药学院附属医院)神经外科;
  • 出版日期:2018-12-03
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.859
  • 基金:国家自然科学基金(51541202,项目负责人:冷卫东;81671831,项目负责人:罗杰)~~
  • 语种:中文;
  • 页:XDKF201902006
  • 页数:6
  • CN:02
  • ISSN:21-1581/R
  • 分类号:26-31
摘要
背景:前期研究证实,聚醚醚酮/双相生物陶瓷复合材料具有良好的生物相容性、理想孔隙率和力学性能,可满足非承重区骨缺损的修复要求。目的:进一步观察包裹血管内皮生长因子的聚醚醚酮/双相生物陶瓷复合材料修复下颌骨缺损的效果。方法:将36只新西兰大白兔随机分成4组,每组9只,对照组不进行任何处理;模型组制作下颌骨缺损模型;假手术组只复制模型组手术过程,不制作骨缺损;支架组将包裹血管内皮生长因子的聚醚醚酮/双相生物陶瓷复合材料植入下颌骨缺损部位。术后4,8,16周取下颌骨标本,进行苏木精-伊红染色与Van Gieson染色,观察骨缺损修复情况;PCR、Western blot和免疫荧光检测血管内皮生长因子表达情况。结果与结论:(1)苏木精-伊红染色显示,对照组和假手术组骨结构完整,模型组术后16周内的骨缺损部位无明显变化;术后8,16周,支架组支架边缘出现成骨细胞;(2)Van Gieson染色显示,对照组和假手术组骨结构完整,造模组术后16周内的骨缺损部位无明显变化;术后8,16周,支架组支架边缘出现成骨细胞,未见明显的胶原纤维;(3)术后4周,3组血管内皮生长因子表达无差异;术后8,16周,模型组血管内皮生长因子表达低于对照组(P <0.05),支架组血管内皮生长因子表达高于对照组(P <0.05);(4)结果表明,聚醚醚酮/双相生物陶瓷复合材料包裹血管内皮生长因子修复下颌骨缺损,可提高组织内血管内皮生长因子的表达,促进骨再生。
        BACKGROUND: Previous studies have confirmed that polyetheretherketone/biphasic bioceramic composites have good biocompatibility, ideal porosity and mechanical properties, which can meet the repair requirements of non-load bearing bone defects. OBJECTIVE: To further observe the effect of polyetheretherketone/biphasic bioceramic composite coated with vascular endothelial growth factor in the repair of mandibular defects.METHODS: Thirty-six New Zealand white rabbits were randomly divided into four groups, nine in each group. The control group did not undergo any treatment. A mandibular defect model was made in the model group. The sham operation group only replicated the surgical procedure of the model group but did not make bone defects. In the scaffold group, the polyetheretherketone/biphasic bioceramic composite coated with vascular endothelial growth factor was implanted into the mandibular defect site. Mandibular specimens were taken at 4, 8, and 16 weeks after operation. Hematoxylin-eosin staining and Van Gieson staining were performed to observe the repair of bone defects. The expression of vascular endothelial growth factor was detected by PCR, western blot and immunofluorescence. RESULTS AND CONCLUSION:(1) Hematoxylin-eosin staining results showed that the bone structure was intact in the control group and the sham operation group, and the bone defect in the model group did not change markedly within 16 weeks after operation; at 8 and 16 weeks after operation, osteoblasts appeared at the scaffold edge of the scaffold group.(2) Van Gieson staining results showed that the bone structure was intact in the control group and the sham operation group, and there was no significant change in the bone defect within 16 weeks after operation; at 8 and 16 weeks after operation, osteoblasts appeared at the scaffold edge of the scaffold group, but not collagen fibers produced.(3) At 4 weeks after operation, there was no difference in the expression of vascular endothelial growth factor among the three groups; at 8 and 16 weeks after operation, the expression of vascular endothelial growth factor in the control group was higher than that in model group(P < 0.05), but lower than that in the scaffold group(P < 0.05). In conclusion, polyetheretherketone/biphasic bioceramic composites coated with vascular endothelial growth factor to repair mandibular defects can increase the expression of vascular endothelial growth factor and promote bone regeneration.
引文
[1]Briem D,Strametz S,Schr?oder K,et al.Response of primary fibroblasts and osteoblasts to plasma treated polyetheretherketone(PEEK)surfaces.J Materi Sci Mater Med.2005;16(7):671-677.
    [2]Dorozhkin SV.Calcium Orthophosphates in Nature,Biology and Medicine.Materials.2009;2(2):399-498.
    [3]Katzer A,Marquardt H,Westendorf J,et al.Polyetheretherketone--cytotoxicity and mutagenicity in vitro.Biomaterials.2002;23(8):1749-1759.
    [4]Converse GL,Conrad TL,Merrill CH,et al.Hydroxyapatite whisker-reinforced polyetherketoneketone bone ingrowth scaffolds.Acta Biomaterialia.2010;6(3):856-863.
    [5]Lee JH,Jang HL,Lee KM,et al.In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology.Acta Biomaterialia.2013;9(4):6177.
    [6]Salerno S,Piscioneri A,Laera S,et al.Improved functions of human hepatocytes on NH 3,plasma-grafted PEEK-WC-PUmembranes.Biomaterials.2009;30(26):4348-4356.
    [7]Dennes TJ,Schwartz J.A Nanoscale Adhesion Layer to Promote Cell Attachment on PEEK.J Am Chem Soc.2009;131(10):3456-3457.
    [8]Marsell R,Einhorn TA.The biology of fracture healing.Injury.2011;42(6):551-555.
    [9]Zhao D,Pan C,Sun J,et al.VEGF drives cancer-initiating stem cells through VEGFR-2|[sol]|Stat3 signaling to upregulate Myc and Sox2.Oncogene.2015;34(24):3107.
    [10]Bosch C,Melsen B,Vargervik K.Importance of the critical-size bone defect in testing bone-regenerating materials.J Craniofac Surg.1998;9(4):310-316.
    [11]Hollinger JO,Kleinschmidt JC.The critical size defect as an experimental model to test bone repair materials.J Craniofac Surg.1990;1(1):60-68.
    [12]Aaboe M,Pinholt EM,Hj?rting-Hansen E.Unicortical critical size defect of rabbit tibia is larger than 8 mm.J Craniofac Surg.1994;5(3):201-203.
    [13]Nyman R,Magnusson M,Sennerby L,et al.Membraneguided bone regeneration.Segmental radius defects studied in the rabbit.Acta Orthopaedica Scandinavica.1995;66(2):169-173.
    [14]Chen G,Li W,Yu X,et al.Study of the cohesion of TTCP/DCPA phosphate cement through evolution of cohesion time and remaining percentage.J Mater Sci.2009;44(3):828.
    [15]Sayer M,Stratilatov AD,Reid J,et al.Structure and composition of silicon-stabilized tricalcium phosphate.Biomaterials.2003;24(3):369.
    [16]Reid JW,Pietak A,Sayer M,et al.Phase formation and evolution in the silicon substituted tricalcium phosphate/apatite system.Biomaterials.2005;26(16):2887.
    [17]Jang JH,Castano O,Kim HW.Electrospun materials as potential platforms for bone tissue engineering.Adv Drug Deliv Rev.2009;61(12):1065.
    [18]Arcangeli E,Kon E,Delcogliano M,et al.Nanocomposite biomimetic scaffold in knee osteochondral defect regeneration:an animal study.J Appl Biomater Biomech.2009;7(1):52-53.
    [19]Khadka A,Li J,Li Y,et al.Evaluation of hybrid porous biomimetic nano-hydroxyapatite/polyamide 6 and bone marrow-derived stem cell construct in repair of calvarial critical size defect.J Craniofac Surg.2011;22(5):1852-1858.
    [20]Schneider OD,Weber F,Brunner TJ,et al.In vivo and in vitro evaluation of flexible,cottonwool-like nanocomposites as bone substitute material for complex defects.Acta Biomaterialia.2009;5(5):1775-1784.
    [21]Chow LC.Next generation calcium phosphate-based biomaterials.Dent Mater J.2009;28(1):1.
    [22]冷卫东,刘彩云,黄翠,等.聚醚醚酮/牙源性双相生物陶瓷复合材料的制备及力学性能[J].中国组织工程研究,2015,19(52):8418-8422.
    [23]Fontijn D,Bosch LJ,Duyndam MC,et al.Basic Fibroblast Growth Factor-Mediated Overexpression of Vascular Endothelial Growth Factor in 1F6 Human Melanoma Cells is Regulated by Activation of PI-3K and p38 MAPK.Cell Oncol.2009;31(3):179-190.
    [24]Park K,Amano H,Ito Y,et al.Vascular endothelial growth factor receptor-1(VEGFR-1)signaling enhances angiogenesis in a surgical sponge model.Biomed Pharmacother.2016;78:140-149.
    [25]Horner A,Bishop NJ,Bord S,et al.Immunolocalisation of vascular endothelial growth factor(VEGF)in human neonatal growth plate cartilage.J Anat.1999;194(Pt 4):519-524.
    [26]Becker R,Pufe T,Kulow S,et al.Expression of vascular endothelial growth factor during healing of the meniscus in a rabbit model.J Bone Joint Surg Br.2004;86(7):1082-1087.
    [27]Lilley CE,Groutsi F,Han Z,et al.Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo.J Virol.2001;75(9):4343-4356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700