用户名: 密码: 验证码:
分等级结构的镍铝水滑石负载Pt催化剂高效室温催化氧化甲醛(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hierarchical Ni-Al hydrotalcite supported Pt catalyst for efficient catalytic oxidation of formaldehyde at room temperature
  • 作者:严朝雄 ; 徐志花 ; 岳琳 ; 石零 ; 黄林勇
  • 英文作者:Zhaoxiong Yan;Zhihua Xu;Lin Yue;Ling Shi;Linyong Huang;Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University;Key Laboratory for Processing and Application of Catalytic Materials, Huanggang Normal University;
  • 关键词:水滑石 ; 镍铝水滑石 ; 分等级结构 ; 催化氧化 ; 甲醛去除
  • 英文关键词:Hydrotalcite;;Ni Al-layered double hydroxides;;Hierarchical structure;;Catalytic oxidation;;Formaldehyde removal
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:江汉大学光电化学材料与器件教育部重点实验室及工业烟尘污染控制湖北省重点实验室;黄冈师范学院催化材料制备及应用湖北省重点实验室;
  • 出版日期:2018-10-11
  • 出版单位:催化学报
  • 年:2018
  • 期:v.39
  • 基金:supported by the National Natural Science Foundation of China (21577046, 21307038);; Wuhan Morning Light Plan of Youth Science and Technology (2017050304010327);; the Opening Project of Key Laboratory of Optoelectronic Chemical Materials and Devices,Ministry of Education,Jianghan University (JDGD-201813)~~
  • 语种:英文;
  • 页:CHUA201812008
  • 页数:10
  • CN:12
  • ISSN:21-1601/O6
  • 分类号:68-77
摘要
甲醛是室内空气中常见的一种挥发性有机物,严重危害人体健康.去除室内空气中甲醛污染物对保障人体健康具有重要意义.在众多的去除甲醛方法中,室温催化氧化法能在室温条件下将甲醛彻底氧化成无毒的CO_2和H_2O,具有催化剂能重复使用、不会导致二次污染、无需额外能量输入和特殊装置等优点,因而广受关注.在该方法中,效率高和稳定性好的催化剂设计和制备是关键.目前有效的室温去除甲醛催化剂一般是负载贵金属型催化剂.据报道,载体(例如载体成分、微结构及表面羟基等)在很大程度上影响负载贵金属型催化剂的活性.我们结合镍铝水滑石含有丰富的表面羟基有利于甲醛气体的吸附和花球状多孔结构有利于反应/生成物的传输,以及Ni具有可变化学价态能与贵金属形成强烈的相互作用等优势,制备了分等级结构的镍铝水滑石(Ni Al-LDHs)负载Pt复合催化剂(Pt/NiAl-LDHs),并探讨了其在室温条件下催化分解甲醛的活性.以Ni(NO_3)_2、Al(NO_3)_3、尿素和NH4F为原料,采用水热法制备了分等级结构花球状的NiAl-LDHs,然后采用浸渍-NaBH4还原法在其表面负载Pt纳米颗粒,从而制备了Pt/NiAl-LDHs复合催化剂;研究了Ni/Al摩尔比对Pt/NiAl-LDHs催化剂室温催化分解甲醛性能的影响.采用XRD、FTIR、TG、SEM、TEM、EDS、XPS和H2-TPR等对所制样品进行表征和分析,结果表明,花球状结构的Pt/NiAl-LDHs催化剂是由交错连接的纳米片组成,沉积的Pt纳米颗粒约3–4nm.当Ni/Al比为2:1时催化剂(Pt/NiAl21)显示出最好的室温催化氧化甲醛性能.经过7次循环使用后, Pt/NiAl21催化剂仍然保持很高的甲醛去除效率,表明其具有良好的稳定性.这主要与其独特的花球状多孔结构、丰富的表面活性氧物种及较大的比表面积等有关.根据性能测试结果及原位红外光谱分析,我们认为在室温条件下, Pt/NiAl21催化剂先将甲醛氧化成甲酸盐和二氧亚甲基(DOM)中间体,然后再进一步将其氧化成CO_2和H_2O.甲酸盐和DOM中间体的氧化是甲醛催化氧化过程中的控制步骤.本文可为高效室温催化氧化甲醛复合催化剂的设计和制备提供思路.
        Catalytic oxidation at room temperature is recognized as the most promising method for formaldehyde(HCHO) removal. Pt-based catalysts are the optimal catalyst for HCHO decomposition at room temperature. Herein, flower-like hierarchical Pt/NiA l-LDHs catalysts with different [Ni~(2+)]/[Al~(3+)] molar ratios were synthesized via hydrothermal method followed by NaB H_4 reduction of Pt precursor at room temperature. The flower-like hierarchical Pt/NiA l-LDHs were composed of interlaced nanoplates and metallic Pt nanoparticles(NPs) approximately 3–4 nm in diameter were loaded on the surface of the Pt/NiA l-LDHs with high dispersion. The as-prepared Pt/NiAl21 nanocomposite was highly efficient in catalyzing oxidation of HCHO into CO_2 at room temperature. The high activity of the hierarchical Pt/NiAl21 nanocomposite was maintained after seven recycle tests, suggesting the high stability of the catalyst. Based on in situ diffuse reflectance infrared Fouri-er transform spectroscopy(DRIFTS) studies, a reaction mechanism was put forward about HCHO decomposition at room temperature. This work provides new insights into designing and fabricat-ing high-performance catalysts for efficient indoor air purification.
引文
[1]C.Zhang,H.He,Catal.Today,2007,126,345-350.
    [2]Q.Xu,W.Lei,X.Li,X.Qi,J.Yu,G.Liu,J.Wang,P.Zhang,Environ.Sci.Technol.,2014,48,9702-9708.
    [3]Z.H.Xu,J.G.Yu,G.Liu,B.Cheng,P.Zhou,X.Y.Li,Dalton Trans.,2013,42,10190-10197.
    [4]D.Sun,Y.Le,C.Jiang,B.Cheng,Appl.Surf.Sci.,2018,441,429-437.
    [5]Z.H.Xu,J.G.Yu,J.X.Low,M.Jaroniec,ACS Appl.Mater.Interfaces,2014,6,2111-2117.
    [6]Z.Xu,J.Yu,W.Xiao,Chem.Eur.J.,2013,19,9592-9598.
    [7]J.G.Yu,X.Y.Li,Z.H.Xu,W.Xiao,Environ.Sci.Technol.,2013,47,9928-9933.
    [8]J.Ye,X.Zhu,B.Cheng,J.Yu,C.Jiang,Environ.Sci.Technol.Lett.,2017,4,20-25.
    [9]Z.Zhu,R.J.Wu,J.Taiwan Inst.Chem.Eng.,2015,50,276-281.
    [10]J.Wang,R.Yunus,J.Li,P.Li,P.Zhang,J.Kim,Appl.Surf.Sci.,2015,357,787-794.
    [11]S.Huang,X.Zhu,B.Cheng,J.Yu,C.Jiang,Environ.Sci.Nano,2017,4,2215-2224.
    [12]J.Zhang,Y.Li,L.Wang,C.Zhang,H.He,Catal.Sci.Technol.,2015,5,2305-2313.
    [13]Y.Duan,S.Song,B.Cheng,J.Yu,C.Jiang,Chin.J.Catal.,2017,38,199-206.
    [14]X.Zhu,B.Cheng,J.Yu,W.Ho,Appl.Surf.Sci.,2016,364,808-814.
    [15]H.Huang,X.Ye,H.Huang,L.Zhang,D.Y.C.Leung,Chem.Eng.J.,2013,230,73-79.
    [16]F.Xu,Y.Le,B.Cheng,C.Jiang,Appl.Surf.Sci.,2017,426,333-341.
    [17]B.Bai,J.Li,J.Hao,Appl.Catal.B,2015,164,241-250.
    [18]J.Zhou,L.Qin,W.Xiao,C.Zeng,N.Li,T.Lv,H.Zhu,Appl.Catal.B,2017,207,233-243.
    [19]M.Jia,H.Bai,Zhaorigetu,Y.Shen,Y.Li,J.Rare Earths,2008,26,528-531.
    [20]Z.Yan,S.Gong,L.An,L.Yue,Z.Xu,React.Kinet.Mech.Catal.,2018,124,293-304.
    [21]N.An,P.Wu,S.Li,M.Jia,W.Zhang,Appl.Surf.Sci.,2013,285,805-809.
    [22]B.B.Chen,X.B.Zhu,M.Crocker,Y.Wang,C.Shi,Appl.Catal.B,2014,154-155,73-81.
    [23]Z.Yan,Z.Xu,J.Yu,M.Jaroniec,Environ.Sci.Technol.,2015,49,6637-6644.
    [24]B.Liu,Y.Liu,C.Li,W.Hu,P.Jing,Q.Wang,J.Zhang,Appl.Catal.B,2012,127,47-58.
    [25]Z.Yan,Z.Xu,B.Cheng,C.Jiang,Appl.Surf.Sci.,2017,404,426-434.
    [26]B.B.Chen,X.B.Zhu,M.Crocker,Y.Wang,C.Shi,Catal.Commun.,2013,42,93-97.
    [27]Z.Xu,J.Yu,M.Jaroniec,Appl.Catal.B,2015,163,306-312.
    [28]Z.Yan,Z.Xu,J.Yu,M.Jaroniec,Appl.Catal.B,2016,199,458-465.
    [29]Z.Yan,B.Zhu,J.Yu,Z.Xu,RSC Adv.,2016,6,50128-50137.
    [30]B.Wang,G.R.Williams,Z.Chang,M.H.Jiang,J.F.Liu,X.D.Lei,X.M.Sun,ACS Appl.Mater.Interfaces,2014,6,16304-16311.
    [31]Y.Y.Du,Q.Jin,J.T.Feng,N.Zhang,Y.F.He,D.Q.Li,Catal.Sci.Technol.,2015,5,3216-3225.
    [32]Z.Yan,Z.Yang,Z.Xu,L.An,F.Xie,J.Liu,J.Colloid Interface Sci.,2018,524,306-312.
    [33]Z.Gao,J.Wang,Z.Li,W.Yang,B.Wang,M.Hou,Y.He,Q.Liu,T.Mann,P.Yang,M.Zhang,L.Liu,Chem.Mater.,2011,23,3509-3516.
    [34]Y.Zou,X.Wang,Y.Ai,Y.Liu,J.Li,Y.Ji,X.Wang,Environ.Sci.Technol.,2016,50,3658-3667.
    [35]H.Lu,Q.Li,H.Xiao,R.Wang,D.Xie,Am.J.Anal.Chem.,2014,5,547-558.
    [36]A.Antonakos,E.Liarokapis,T.Leventouri,Biomaterials,2007,28,3043-3054.
    [37]K.S.W.Sing,D.H.Everett,R.A.W.Haul,L.Moscou,R.A.Pierotti,J.Rouquerol,T.Siemieniewska,Pure Appl.Chem.,1985,57,603-619.
    [38]J.S.Valente,J.Prince,A.M.Maubert,L.Lartundo-Rojas,P.del Angel,G.Ferrat,J.G.Hernandez,E.Lopez-Salinas,J.Phys.Chem.C,2009,113,5547-5555.
    [39]Q.Liu,G.Fan,S.Zhang,Y.Liu,F.Li,Mater.Lett.,2012,82,4-6.
    [40]N.Ohtsu,M.Oku,T.Shishido,K.Wagatsuma,Appl.Surf.Sci.,2007,253,8713-8717.
    [41]X.H.Huang,G.H.Li,B.Q.Cao,M.Wang,C.Y.Hao,J.Phys.Chem.C,2009,113,4381-4385.
    [42]M.Wei,X.Xu,X.Wang,F.Li,H.Zhang,Y.Lu,M.Pu,D.G.Evans,X.Duan,Eur.J.Inorg.Chem.,2006,2831-2838.
    [43]G.Busca,J.Lamotte,J.C.Lavalley,V.Lorenzelli,J.Am.Chem.Soc.,1987,109,5197-5202.
    [44]S.J.Park,I.Bae,I.S.Nam,B.K.Cho,S.M.Jung,J.H.Lee,Chem.Eng.J.,2012,195-196,392-402.
    [45]T.Kecskés,J.Raskó,J.Kiss,Appl.Catal.A,2004,273,55-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700