用户名: 密码: 验证码:
热红外遥感及其在农业旱情监测中的应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in thermal infrared remote sensing and its application in agricultural drought monitoring
  • 作者:独文惠 ; 覃志豪 ; 黎业
  • 英文作者:Du Wenhui;Qin Zhihao;Li Ye;Institute of Agricultural Resources and Regional Planning,Chinese Academy of Agricultural Sciences;
  • 关键词:热红外遥感 ; 农业旱情监测 ; 农业灾害遥感 ; 地表温度遥感反演
  • 英文关键词:thermal infrared remote sensing;;agricultural drought monitoring;;remote sensing of agricultural disasters;;land surface temperature remote sensing retrieval
  • 中文刊名:NXTS
  • 英文刊名:China Agricultural Informatics
  • 机构:中国农业科学院农业资源与农业区划研究所/农业部农业信息技术重点实验室;
  • 出版日期:2018-04-25
  • 出版单位:中国农业信息
  • 年:2018
  • 期:v.30
  • 基金:国家自然科学基金项目“农作物旱情遥感监测中像元地表温度可比性校正方法研究”(41771406);国家自然科学基金项目“热红外遥感图像中有云像元的地表温度估算方法研究”(41471300);; 中国农业科学院科技创新工程协同创新项目课题“空天地网农业监测大数据挖掘与深度分析关键技术研究”(CAAS-XTCX2016007-4)
  • 语种:中文;
  • 页:NXTS201802004
  • 页数:18
  • CN:02
  • ISSN:11-4922/S
  • 分类号:28-45
摘要
【目的】梳理目前热红外遥感研究进展,探讨热红外遥感技术在农业旱情监测方面的应用现状,为热红外遥感技术在土壤水分反演和旱情监测方面的应用探明发展道路。【方法】文章通过系统梳理和总结国内外热红外遥感及其在农业旱情监测中的应用研究进展,分析了目前研究存在的问题,并对未来热红外遥感在农业旱灾监测中的应用进行了展望。【结果】热红外遥感已经形成多源遥感数据和多时空分辨率数据并存的局面,地表温度遥感定量反演和地表蒸散发遥感估算已经取得较大进展,但热红外遥感数据产品系统生产仍然面临许多问题,尤其是时空尺度、云影响、像元间可比性和反演精度等问题,仍然需要开展深入的研究;目前农业旱情遥感监测已经取得了较大进展,国内外学者提出了多种不同的表征指数监测方法,但由于热红外遥感存在的许多固有问题,农业旱情遥感监测仍面临许多挑战,尤其是从热红外遥感前沿问题出发开展农业旱情遥感监测模型研究。【结论】在对地观测大数据时代背景下,热红外遥感及其在农业旱情遥感监测中的应用,迫切需要进一步深入研究全天候高精度地表温度遥感反演、高精度农田蒸散遥感定量估算、时空尺度转换与多尺度监测、旱情监测机理模型构建等前沿学术问题,同时,这些问题也是农业旱情遥感监测获得突破性进展的重要方向。热红外遥感理论与方法的发展,将有力地推动我国农业旱情监测精度的提高,为现代精准农业发展保驾护航。
        [Purpose]The current research progress of thermal infrared remote sensing is summarized,the agricultural drought monitoring methods of thermal infrared remote sensing technology are illustrated and discussed to explore a development track for the thermal infrared remote sensing technology in soil moisture retrieval and agricultural drought monitoring. [Methods] In this paper,the problems and research progress of thermal infrared remote sensing and its application in agricultural drought monitoring is systematically analyzed,Furthermore,future development direction of the thermal infrared remote sensing in agricultural drought monitoring are discussed. [Result] Multi-source thermal infrared remote sensing data having a variety of different spatial and temporal resolution are produced. Great progress has been made in quantitative retrieval of land surface temperature and surface evaporation estimation,but the production of product system for thermal infrared remote sensing data still faces some problems,especially in comparability of pixel level,time and space scales,cloud effect and retrieval precision. Therefore,further research is still needed. Great progress has been made in remote sensing agricultural drought monitoring,a variety of characterization index monitoring methods were proposed,but due to many inherent problems of thermal infrared remote sensing,still face many challenges in agricultural drought monitoring by remote sensing,especially the agricultural drought monitoring model research from the angle of the thermal infrared remote sensing research frontier problems. [Conclusion]In the context of earth observation big data era,for the thermal infrared remote sensing and its application in agricultural drought monitoring is need further in-depth study of the frontier academic problems,such as high-accuracy quantitative retrieval of all-weather land surface temperature,farmland evapotranspiration estimation in high accuracy,the transform of different space-time scales,multi-scale drought monitoring and model building of monitoring mechanism,etc. At the same time these problems are also an important breakthrough direction for agricultural drought monitoring. The development of thermal infrared remote sensing theory and method will strongly promote the improvement of agricultural drought monitoring accuracy in China and support the development of modern precision in agriculture.
引文
[1]覃志豪,徐斌,李茂松,等.我国主要农业气象灾害机理与监测研究进展.自然灾害学报,2005,24(2):61~69.
    [2]白淑英,徐永明编著.农业遥感2013.北京:科学出版社,2013.
    [3]田国良,柳钦火,陈良富.热红外遥感(第二版)2014.北京:电子工业出版社,2014.
    [4]李瑞,刘涛,武威,等.农业图像监测技术的应用与展望.中国农机化学报,2016,(12):168~173.
    [5]崔淑卿,陈娟,强桂芬,等.热红外遥感技术在旱情监测的应用前景分析.内蒙古水利,2005(3):9~10.
    [6]贾德伟,周磊,黄灿辉,等.农业干旱遥感监测方法及其应用的研究进展.安徽农业科学,2016,44(36):233~235.
    [7]Qin Z,Karnieli A,Berliner P.A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region.International Journal of Remote Sensing,2012,22(18):3719~3746.
    [8]Jiménez-Mu?oz J C,Sobrino J A.A generalized single‐channel method for retrieving land surface temperature from remote sensing data.Journal of Geophysical Research Atmospheres,2003,108(D22):4688.
    [9]Jimenez-Munoz J C,Cristobal J,Sobrino J A,et al.Revision of the Single-Channel Algorithm for Land Surface Temperature Retrieval From Landsat Thermal-Infrared Data.IEEE Transactions on Geoscience&Remote Sensing,2008,47(1):339~349.
    [10]Sobrino J A,Sòria G and Prata A J.Surface temperature retrieval from Along Track Scanning Radiometer 2 data:algorithms and validation.Journal of Geophysical Research-Atmospheres,2004,109(D11):D11101.
    [11]Mcmillin L M.Estimation of sea surface temperatures from two infrared window measurements with different absorption.Journal of Geophysical Research,1975,80(36):5113~5117.
    [12]Qin Z,Dall′Olmo G,Karnieli A,et al.Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA-advanced very high resolution radiometer data.Journal of Geophysical Research Atmospheres,2001,106(D19):22655~22670.
    [13]覃志豪,高懋芳,秦晓敏,等.农业旱灾监测中的地表温度遥感反演方法——以MODIS数据为例.自然灾害学报,2005,14(4):64~71.
    [14]Becker F,Li Z L.Towards a local split window method over land surface.International Journal of Remote Sensing,1990,11:369~393.
    [15]Wan Z,Dozier J.A generalized split-window algorithm for retrieving land surface temperature from space.IEEE Transactions on Geosciences and Remote Sensing,1996,34:892~905.
    [16]Gillespie A R,Rokugawa S,Hook S J,et al.Temperature/Emissivity Separation Algorithm Theoretical Basis Document,Version 2.4.1996,Maryland,USA:NASA/GSFC:1~64.
    [17]李召良,段四波,唐伯惠,等.热红外地表温度遥感反演方法研究进展.遥感学报,2016,20(5):899~920.
    [18]Watson K.Two-temperature method for measuring emissivity.Remote Sensing of Environment,1992,42(2):117~121.
    [19]Wan Z M and Li Z L.A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data.IEEE Transactions on Geoscience and Remote Sensing,1997,35(4):980~996.
    [20]Caselles V,Coll C and Valor E.Land surface emissivity and temperature determination in the whole HAPEX-Sahel area from AVHRR data.International Journal of Remote Sensing,1997,18(5):1009~1027.
    [21]Becker F,Li Z L.Temperature-independent spectral indices in thermal infrared bands.Remote Sensing of Environment,1990,32(1):17~33.
    [22]徐希孺,陈良富,庄家礼.基于多角度热红外遥感的混合像元组分温度演化反演方法.中国科学(D辑),2001(1):81~88.
    [23]李召良,Stoll,仁华,等.利用ATSR数据分解土壤和植被温度的研究.中国科学:技术科学,2000,30(s1):27~38.
    [24]Sobrino J A and Cuenca J.Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements.Applied Optics,1999,38(18):3931~3936.
    [25]Borel C C.Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data.International Journal of Remote Sensing,2008,29(17/18):5029~5045.
    [26]Wang N,Wu H,Nerry F,et al.Temperature and Emissivity Retrievals From Hyperspectral Thermal Infrared Data Using Linear Spectral Emissivity Constraint.IEEE Transactions on Geoscience&Remote Sensing,2011,49(4):1291~1303.
    [27]高彦春,龙笛.遥感蒸散发模型研究进展.遥感学报,2008,12(3):515~528.
    [28]郑有飞,陈鹏,吴荣军,等.地表蒸散的遥感估算模型及其在农业干旱监测中的应用.生态学杂志,2011,30(4):837~844.
    [29]Bastiaanssen W G M,Pelgrum H,Wang J,et al.A remote sensing surface energy balance algorithm for land(SEBAL).:Part 2:Validation.Journal of Hydrology,1998,212(1-4):213~229.
    [30]Bastiaanssen W.SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin Turkey.Journal of hydrology,2000,229,1:87~100.
    [31]Su Z.The Surface Energy Balance System(SEBS)for estimation of turbulent heat fluxes.Hydrology and Earth System Sciences Discussions,2002,6,1:85~100.
    [32]Shuttleworth W J,Wallace J S.Evaporation from sparse crops-an energy combination theory.Quarterly Journal of the Royal Meteorological Society,1985,111(469):839~855.
    [33]Shuttleworth W J,Gurney R J.The theoretical relationship between foliage temperature and canopy resistance in sparse crops.Quarterly Journal of the Royal Meteorological Society,1990,116(492):497~519.
    [34]隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用.遥感学报,1997,1(3):220~224.
    [35]Norman J M,Kustas W P,Humes K S.Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature.Agricultural&Forest Meteorology,1995,77(3):263~293.
    [36]Anderson MC,Kustas WP,Norman JM.Up scaling flux observations from local to continental scales using thermal remote sensing.Agronomy Journal,2007,99:240~254.
    [37]Mecikalski JR,Diak GR,Anderson MC,et al.Estimating fluxes on continental scales using remotely sensed data in an atmospheric-land exchange model.Journal of Applied Meteorology,1999,38:1352~1369.
    [38]Watson K,Pohn H A,Offield T W.Thermal Inertia Mapping From Nimbus Satellite Data.Proceedings of The International Symposium on Remote Sensing of Environment,1972,14(3):321.
    [39]Watson K,Pohn H A.Thermal inertia mapping from satellites discrimination of geologic units in Oman.Journal of Research of U.S.Geological Survey,1974,2(2):147~158.
    [40]Rosema A,Bijleveld J H.TELL-US test of an algorithm for the determination of soil moisture and evaporation from remotely sensed surface temperature.E.A.R.S.,Kanaalweg 1,Delft,The Netherlands,1977.
    [41]Price J C.The Potential of Remote Sensed Thermal Infrared Data to Infer Surface Soil Moisture and Evaporation.Water Resources Research,1980,16(4):787~795.
    [42]Price J C.On the Analysis of Thermal Infrared Imagery.The Limited Utility of Apparent Thermal Inertia.Remote Sensing of Environment,1985,18:59~73.
    [43]Pratt D A.A Calibration Procedure for Fourier Series Thermal Inertia Models.Photogram metric Engineering and Remote Sensing,1980,46(4):529~538.
    [44]隋洪智,田国良.热惯量方法监测土壤水分.北京:科学出版社,1990.
    [45]余涛,田国良.热惯量法在监测土壤表层水分变化中的研究.遥感学报,1997,1(1):24~31.
    [46]Idso S B,Jackson R D,Jr P J P,et al.Normalizing the stress-degree-day parameter for environmental variability.Agricultural Meteorology,1981,24(1):45~55.
    [47]Jackson R D,Idso S B,Reginato R J,et al.Canopy temperature as a crop water stress indicator.Water Resources Research,1981,17(4):1133~1138.
    [48]Jackson R D.Canopy Temperature and Crop Water Stress.Advances in Irrigation,1982,1:43~85.
    [49]张仁华.遥感作物缺水状况的研究.遥感技术与应用,1987,2(1):25~30.
    [50]田国良.土壤水分的遥感监测方法.遥感学报,1991(2):89~98.
    [51]申广荣,田国良.基于GIS的黄淮海平原旱灾遥感监测研究——作物缺水指数模型的实现.生态学报,2000,20(2):224~228.
    [52]Moran M S,Clarke T R,Inoue Y,et al.Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index.Remote Sensing of Environment,1994,49(3):246~263.
    [53]Sandholt I,Rasmussen K,Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status.Remote Sensing of Environment,2002,79(2):213~224.
    [54]Carlson T N,Perry E M,Schmugge T J.Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields.Agricultural&Forest Meteorology,1990,52(1):45~69.
    [55]Carlson T N,Gillies R R,Perry E M.A Method to Make Use of Thermal Infrared Temperature and NDVI measurements to Infer Surface Soil Water Content and Fractional Vegetation Cover.Remote Sensing Reviews,1994,9(1):161~173.
    [56]王鹏新,龚健雅,李小文.条件植被温度指数及其在干旱监测中的应用.武汉大学学报(信息科学版),2001,26(5):412~418.
    [57]Kogan F N.Application of vegetation index and brightness temperature for drought detection.Advances in Space Research,1995,15(11):91~100.
    [58]Kogan F N.Global drought and flood-watch from NOAA polar-orbitting satellites.Advances in Space Research,1998,21(3):477~480.
    [59]Fan J,Zheng Z.Drought monitoring with VHI computed from the improved MODIS LST[C]//First International Conference on Agro-Geoinformatics.IEEE,2012:1~5.
    [60]牟伶俐.农业旱情遥感监测指标的适应性与不确定性分析.中国科学院研究生院(遥感应用研究所),2006.
    [61]Mcvicar T R,Jupp D L B.The current and potential operational uses of remote sensing to aid decisions on drought exceptional circumstances in Australia:a review.Agricultural Systems,1998,57(3):399~468.
    [62]谢江霞,张丽华.基于遥感的农业干旱监测模型研究.安徽农业科学,2008(8):3460~3462.
    [63]贾德伟,周磊,黄灿辉,等.农业干旱遥感监测方法及其应用的研究进展.安徽农业科学,2016(36):233~235.
    [64]Bowers S.A,Smith S.J.Spectrrophotometric determination of soil water content.Soil Science Society of America Proceedings,1972,36:978~980.
    [65]Bowers,S.A.,Hanks,R.J.Reflection of radiant energy from soils.Soil Science,1965,100(2):130~138
    [66]Liu Weidong,F Baret,et al.Relating soil surface moisture to reflectance.Remote Sensing of Environment,2002,81(2-3),238~246.
    [67]Lobell D B,Asner G P.Moisture Effects on Soil Reflectance.Soil Science Society of America Journal,2002,66(3):722~727.
    [68]刘伟东,Frédéric Baret,张兵,等.高光谱遥感土壤湿度信息提取研究.土壤学报,2004,41(5):700~706.
    [69]白雪娇.条件植被温度指数的时空尺度上推方法研究.中国农业大学,2017.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700