用户名: 密码: 验证码:
ABR-MAP-MBR组合工艺处理高浓度养殖废水研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Treatment of high concentration piggery wastewater by ABR-MAP-MBR process
  • 作者:聂丽君 ; 李德豪 ; 何京东 ; 钟华文 ; 林培喜 ; 周如金
  • 英文作者:NIE Lijun;LI Dehao;HE Jingdong;ZHONG Huawen;LIN Peixi;ZHOU Rujin;College of Environment and Biological Engineering, Guangdong University of Petrochemical Technology;Chinese Academy of Sciences;
  • 关键词:养殖废水 ; 厌氧折流板反应器 ; 磷酸铵镁沉淀法 ; 兼氧/好氧膜生物反应器 ; 水力停留时间
  • 英文关键词:piggery wastewater;;anaerobic baffled reactor (ABR);;magnesium ammonium phosphate (MAP);;anoxic/aerobic-membrane bioreactor(A/O-MBR);;hydraulic retention time(HRT)
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:广东石油化工学院环境与生物工程学院;中国科学院;
  • 出版日期:2018-03-12 09:40
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(21777034);; 广东省科技计划资助项目(2014A020223008,2017A030223010);; 广东省教育厅自然科学特色创新项目(2016KTSCX088)~~
  • 语种:中文;
  • 页:HGSZ201806048
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:393-400
摘要
针对养殖废水高悬浮物、高有机物及高氨氮的特点,采用厌氧折流板反应器/磷酸铵镁沉淀/兼氧-好氧膜生物反应器(ABR-MAP-MBR)组合新工艺对其进行中试处理研究,考察生物反应器的启动运行条件;考察水力停留时间(HRT)、水温和溶解氧(DO)等运行参数对养殖场废水各阶段处理效果的影响;考察MAP沉淀法对ABR厌氧出水的NH_4~+去除效果。结果表明:采用阶梯负荷启动策略,60 d完成ABR反应器的启动,厌氧环节在HRT为24 h、水温25~35℃时COD去除率达73.5%;磷酸铵镁沉淀过程中选择氯化镁、磷酸三钠作为沉淀剂,控制Mg~(2+)∶NH_4~+∶PO_4~(3-)摩尔比为1.2∶1∶0.95,pH为8.5~9.0条件下处理ABR厌氧出水,COD、NH_4~+和PO_4~(3-)-P去除率分别为28.2%、85.4%和89.7%;通过对A/O-MBR反应器HRT和DO的条件优化,该单元的COD、SS、NH_4~+和TN等指标的去除率分别为82.0%、95.2%、72.4%和67.7%(HRT=16 h,O区DO≥3.0 mg·L~(-1))。经过组合工艺的综合处理,系统出水各项主要指标(SS、COD、TN和TP等)达到《畜禽养殖业污染物排放标准》(GB18596—2001)一级排放标准,表明该新工艺在规模化养殖场废水处理中具有良好的应用前景。
        Piggery wastewater is difficult to be treated due to its high concentrations of suspended solids(SS), organic matter and ammonia nitrogen. An integrated process was proposed to treat the piggery wastewater, which consists of anaerobic baffled reactor(ABR), magnesium-ammonium-phosphate precipitation(MAP) and anoxic/aerobic-membrane bioreactor(A/O MBR). The influences of ABR startup conditions, hydraulic retention time(HRT), water temperature, and dissolved oxygen(DO) on the performance of pollutants removal were investigated. The MAP were used to remove the NH4-N in the wastewater discharged from the ABR. Based on the strategy of stepped-loading, the ABR process startup was finished within 60 days and after that, a 73.5% of COD removal efficiency was achieved at the HRT of 24 h and temperature of 25—35℃. Effluents from the ABR were treated by the MAP using magnesium chloride and trisodium phosphate as precipitant. At the optimum conditions that the molar ratio of reagent dosing Mg~(2+)∶NH_4~+∶PO_4~(3-) was 1.2∶1∶0.95 at the p H value of 8.5—9.0, the removal efficiency of COD, NH4-N and PO_4~(3-) -P reached 28.2%, 85.4%, and 89.7% respectively. At an optimized HRT(16 h) and DO(≥3.0 mg·L~(-1)) in the A/O-MBR, the removal efficiency of COD, SS, NH4-N and TN was 82.0%, 95.2%, 72.4% and 67.7%, respectively. As a result, the final effluent quality, including SS, COD, TN and TP, well met the first class standard of the "Discharge standard of pollutants for livestock and poultry breeding"(GB 18596—2001), demonstrating that the new integrated process proposed in this paper was very promising for the treatment of piggery wastewater.
引文
[1]张锁良,宋宇轩.我国畜牧业存在的问题、对策以及未来的发展趋势[J].家畜生态学报,2014,35(11):6-11.ZHANG S L,SONG Y X.Problems,countermeasures and prospects of livestock industry in China[J].Acta Ecologiae Animalis Domastici,2014,35(11):6-11.
    [2]国家统计局.中国统计年鉴[M].北京:中国统计出版社,2016.State Statistical Bureau.China Statistical Yearbook[M].Beijing:China Statistics Press,2016.
    [3]林代炎,叶美锋,吴飞龙,等.规模化养猪场粪污循环利用技术集成与模式构建研究[J].农业环境科学学报,2010,29(2):386-391.LIN D Y,YE M F,WU F L,et al.Recycling model construction and technology integration of feces from large-scale pig farm[J].Journal of Agro-Environment Science,2010,29(2):386-391.
    [4]王兰,邓良伟,王霜,等.畜禽养殖废水厌氧消化液好氧处理研究与应用现状[J].中国沼气,2015,33(5):3-10.WANG L,DENG L W,WANG S,et al.Research and application status of aerobic treatment for the anaerobic effluent of animal wastewater[J].China Biogas,2015,33(5):3-10.
    [5]孙文.国内外规模化猪场废水处理工艺技术新进展[J].环境科学导刊,2007,26(6):68-70.SUN W.Latest advances of wastewater treatment process of large scale hoggery from a broad and home[J].Environmental Science Survey,2007,26(6):68-70.
    [6]ZHANG M,LAWLOR P G,WU G,et al.Partial nitrification and nutrient removal in intermittently aerated sequencing batch reactors treating separated digestate liquid after anaerobic digestion of pig manure[J].Bioprocess Biosystems Engineering,2011,34(6):1049-1056.
    [7]DELGADO S,VILLARROEL R,GONZALEZ E.Effect of the shear intensity on fouling in submerged membrane bioreactor for wastewater treatment[J].Journal of Membrane Science,2008,31l(1/2):173-181.
    [8]MOHAMMED T A,BIRIMA A H,NOOR M J M M,et al.Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions[J].Desalination,2008,221(1/2/3):502-510.
    [9]LETTINGA G,FIELD J,LIER J V,et al.Advanced anaerobic wastewater treatment in the near future[J].Water Science and Technology,1997,35(10):5-12.
    [10]SARATHAI Y,KOOTTATEP T,MOREL A.Hydraulic characteristics of an anaerobic baffled reactor as onsite wastewater treatment system[J].Journal of Environmental Sciences,2010,22(9):1319-1326.
    [11]聂丽君,钟华文,周如金,等.混凝/厌氧/兼氧-好氧膜生物反应器组合新工艺处理制革废水[J].化工学报,2016,67(9):3395-4003.NIE L J,ZHONG H W,ZHOU R J,et al.Treatment of tanning wastewater by consisted of coagulation,anaerobic baffled reactor and anoxic/aerobic-membrane bioreactor[J].CIESC Journal,2016,67(9):3395-4003.
    [12]国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2008.China Environmental Protection Administration.Monitoring and Determination Methods for Water and Wastewater[M].4th ed.Beijing:China Environmental Science Press,2008.
    [13]UYANIK S,SALLIS P J,ANDERSON G K.Improved split feed anaerobic baffled reactor(SFABR)for shorter start-up period and higher process performance[J].Water Sci.Technol.,2002,46(4/5):223-230.
    [14]何仕均,黄永恒,王建龙.折流式厌氧反应器的启动性能[J].清华大学学报(自然科学版),2006,46(6):865-867.HE S J,HUANG Y H,WANG J L.Start-up performance of anaerobic baffled reactor[J].J.Tsinghua Univ.(Sci.&Tech.),2006,46(6):865-867.
    [15]WANG J,JI M,LI E,et al.Municipal landfill leachate treatment by using combined UASB and MBR system and its problems[J].Environmental Engineering,2003,16(6):215-217.
    [16]孙振世,陈英旭,杨晔,等.UASB的启动及其影响因素[J].中国沼气,2000,18(2):17-19.SUN Z S,CHEN Y X,YANG Y,et al.Start-up of UASB and influencing factors[J].China Biogas,2000,18(2):17-19.
    [17]赵丽,陈晴,王毅力.ABR处理模拟畜禽养殖废水中有机物的快速启动与运行优化研究[J].环境工程学报,2017,11(7):3943-3951.ZHAO L,CHEN Q,WANG Y L.Study on quick start-up and operation optimization of anaerobic baffled reactor(ABR)treating synthetic livestock wastewater[J].Chinese Journal of Environmental Engineering,2017,11(7):3943-3951.
    [18]曹榕,谢丽,黄燕,等.猪粪废水的厌氧处理工艺研究进展[J].水处理技术,2012,38(1):10-16.CAO R,XIE L,HUANG Y,et al.A review on anaerobic treatment of swine manure[J].Technology of Water Treatment,2012,38(1):10-16.
    [19]王欢,裴伟征,李旭东,等.低碳氮比猪场废水短程硝化反硝化-厌氧氨氧化脱氮[J].环境科学,2009,30(3):815-821WANG H,PEI W Z,LI X D,et al.Removing nitrogen from low-CPN-piggery-wastewater using shortcut nitrification/denitrificationANAMMOX[J].Environmental Science,2009,30(3):815-821.
    [20]SUZUKI K,TANAKA Y,OSADA T,et al.Removal of phosphate,magnesium and calcium from swine wastewater through crystallization enhanced by aeration[J].Water Rsearch,2002,36(12):2991-2998.
    [21]TELZHENSKY M,BIRNHACK L,LEHMANN O,et al.Selective separation of seawater Mg2+ions for use in downstream water treatment processes[J].Chemical Engineering Journal,2011,175:136-143.
    [22]王岩,彭凯,王克科,等.磷酸铵镁沉淀法回收猪场废水中氮磷的中试研究[J].郑州大学学报(工学版),2013,34(4):81-84WANG Y,PENG K,WANG K K,et al.A medium-scale study of recovery of nitrogen and phosphorus by struvite crystallization from swine wastewater[J].Journal of Zhengzhou University(Engineering Science),2013,34(4):81-84.
    [23]聂丽君,李霞,黄梅,等.磷酸铵镁法处理猪场废水的工艺优化研究[J].广东石油化工学院学报,2016,26(3):29-33.NIE L J,LI X,HUANG M,et al.Study of the process of the piggery wastewater disposal by magnesium ammonium phosphate precipitation[J].Journal of Guangdong University of Petrochemical Technology,2016,26(3):29-33.
    [24]陶智伟,冯亮,肖惠群,等.磷酸铵镁法回收养猪沼液中营养元素的研究[J].水处理技术,2016,42(1):96-100.TAO Z W,FENG L,XIAO H Q,et al.Nutrients recovery from piggery biogas slurry via map precipitation[J].Technology of Water Treatment,2016,42(1):96-100.
    [25]黄瑾,林琳,王建华,等.膜生物反应器在污水深度处理中的技术研究[J].中国市政工程,2009,140(3):53-57.HUANG J,LIN L,WANG J H,et al.Study of membrane bioreactor in advanced wastewater treatment[J].China Municipal Engineering,2009,140(3):53-57.
    [26]杜江,孙宝盛,马瑶,等.贫营养条件下2种MBR污泥微生物的菌群对比[J].环境工程学报,2013,7(6):2255-2261.DU J,SUN B S,MA Y,et al.Comparative microbial community of MBR sludge in oligotrophic environment[J].Chinese Journal of Environmental Engineering,2013,7(6):2255-2261.
    [27]张自杰.排水工程:下册[M].5版.北京:中国建筑工业出版社,2015.ZHANG Z J.Wastewater Engineering:2nd Volume[M].5th ed.Beijing:China Architecture&Building Press,2015.
    [28]马放,王弘宇,周丹丹.好氧反硝化生物脱氮机理分析及研究进展[J].工业用水与废水,2005,36(2):11-15.MA F,WANG H Y,ZHOU D D.An analysis of mechanism of bioremoval of nitrogen by aerobic denitrification process and development of study thereof[J].Industrial Water&Wastewater,2005,36(2):11-15.
    [29]辛明秀,赵颖,周军,等.反硝化细菌在污水脱氮中的作用[J].微生物学通报,2007,34(4):773-776.XIN M X,ZHAO Y,ZHOU J,et al.The application of denitrifying bacteria in denitrification of wastewater[J].Microbiology China,2007,34(4):773-776.
    [30]李强,李军,李研,等.A/O-MBR处理高氨氮废水的短程硝化研究[J].中国给水排水,2013,29(1):34-38.LI Q,LI J,LI Y,et al.Short-cut nitrification in A/O-MBR for treatment of high-concentration ammonia nitrogen wastewater[J].China Water&Wastewater,2013,29(1):34-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700