用户名: 密码: 验证码:
水蚀风蚀交错区河北杨树干液流密度特征及其对环境因子的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamics of sap flow density of Populus hopeiensis and its responses to environmental variables in the water-wind erosion crisscross region on the Loess Plateau
  • 作者:刘崴 ; 魏天兴 ; 朱清科
  • 英文作者:Liu Wei;Wei Tianxing;Zhu Qingke;School of Soil and Water Conservation,Beijing Forestry University;Key Laboratory of State Forestry Administration on Soil and Water Conservation;Engineering Research Center of Forestry Ecological Engineering of Ministry of Education;
  • 关键词:河北杨 ; 树干液流密度 ; 环境因子 ; 树干储存水
  • 英文关键词:Populus hopeiensis;;sap flow density;;environmental factor;;stem water storage
  • 中文刊名:BJLY
  • 英文刊名:Journal of Beijing Forestry University
  • 机构:北京林业大学水土保持学院;水土保持国家林业局重点实验室;林业生态工程教育部工程研究中心;
  • 出版日期:2018-05-15
  • 出版单位:北京林业大学学报
  • 年:2018
  • 期:v.40
  • 基金:国家重点研发计划专题(2016YFC050170502);; 国家科技支撑计划课题(2015BAB07B02);; 国家生态系统观测研究网络运行服务项目(山西吉县,2016--2017)
  • 语种:中文;
  • 页:BJLY201805009
  • 页数:9
  • CN:05
  • ISSN:11-1932/S
  • 分类号:77-85
摘要
【目的】研究黄土高原水蚀风蚀交错区乡土树种河北杨的树干液流密度变化特征及其与环境因子的关系,为该地区水资源承载力研究和树种选择提供理论依据。【方法】利用Granier热扩散探针法和自动气象监测系统对陕北吴起县河北杨树干液流密度和周围气象条件、土壤含水量等进行连续测定分析。【结果】河北杨树干液流密度日变化呈宽幅单峰形,液流密度峰值提前于太阳辐射强度峰值约2.5 h,提前于水汽压差(VPD)峰值约4 h。夜间液流活动主要发生在后半夜00:00—06:00,晴天液流密度变化幅度小,雨天变化幅度大;灌水当天干基液流密度峰值出现的时间明显提前,峰值大小比灌水前提高66.66%,冠基处峰值比灌水前提高73.62%,灌水处理后实验组连续两日液流密度均值比灌水前减少2.21%,而对照组减少21.89%,晴天条件下,树干液流密度与太阳辐射、VPD、气温和风速极显著正相关(P<0.01),与土壤含水量显著正相关(P<0.05),与相对湿度极显著负相关(P<0.01)。降雨天树干液流密度与太阳辐射、气温和风速极显著正相关(P<0.01),与VPD显著正相关(P<0.05);与对照组比较,灌水之后液流密度与气象因子的相关系数绝对值没有明显增加;河北杨树干储存水的日动态总体表现为上午释放和下午补充,并存在两次较明显的释放-补充周期。【结论】河北杨树干液流密度主要受太阳辐射强度、VPD、气温、相对湿度、风速和土壤含水量的影响,液流密度峰值时间与太阳辐射强度、VPD、气温等气象因子存在时滞,土壤水分的增加可缩短液流密度与气象因子峰值的时间差,上午储存水的持续释放是导致树干液流密度与气象因子时滞效应的重要原因。
        [Objective] We aimed to analyze the differences and characteristics of sap flow of Populushopeiensis among the different environment conditions in the water-wind erosion crisscross region on the Loess Plateau,and to clarify the relationship between sap flow density and environmental factors. This study provides a scientific basis for the water resource carrying capacity and tree species selection.[Method]The Granier's thermal dissipation probe method and a micrometeorological monitoring system were used to measure the sap flow density of Populus hopeiensis during growing season in Wuqi County,Shaanxi Province of northwestern China. [Result]The results showed that the diurnal process of sap flow density in P. hopeiensis showed a broad unimodal change and the maximum sap flow density reached about 2. 5 hours before the maximum of solar radiation,and about 4 hours before the maximum of vapor pressure deficit(VPD). During the studying period,the nocturnal sap flow was noticeable in 00: 00—06: 00 and only in very few occasions sap flow was totally stopped. On sunny days,daily variation in sap flow density exhibited little amplitudes,whereas it exhibited large variation on rainy days. The peak value appearing time of sap flow density of trunk base was early apparently after being watered,and the peak sap flow density of trunk base and crown base increased by 73. 62% and 66. 66%,respectively after being watered. The results showed that the peak value in the sap flow density was greatly influenced by the soil moisture. And the mean daily sap flow density of EG(experimental group: watering treatment)and control check(CK) decreased by 2. 21% and 21. 89%,respectively after being watered. It showed that artificial irrigation can supplement the soil water deficit in the forest land in a short time,and restore the normal transpiration water consumption pattern of the tree. With respect to P. hopeiensis,sap flow density on sunny day was positively correlated with each of solar radiation,VPD,air temperature,wind speed(P < 0. 01) and soil volumetric moisture content(P < 0. 05),but negatively correlated with relative humidity(P < 0. 01). On rainy day,sap flow density was positively correlated with solar radiation,air temperature,wind speed(P < 0. 01) and VPD(P < 0. 05). Compared with CK,the correlation coefficients of sap flow density of EG and meteorological factors were not higher.[Conclusion] Our findings suggest that the meteorological factors and soil moisture had important impacts on sap flow density and the time lags of sap flow density to environmental variables were related with the discharge of stem water storage. Watering treatment can shorten the time lags of sap flow and meteorological factors.
引文
[1]周海光,刘广全,焦醒,等.黄土高原水蚀风蚀复合区几种树木蒸腾耗水特性[J].生态学报,2008,28(9):4568--4574.Zhou H G,Liu G Q,Jiao X,et al.Water consumption by transpiration of several trees species in the Loess Plateau with mixed water and wind erosion[J].Acta Ecologica Sinica,2008,28(9):4568--4574.
    [2]朱亚红,孙存举,朱铭强,等.河北杨与沙棘的光合生理特性及叶绿素荧光参数比较[J].中南林业科技大学学报,2015,35(2):26--31.Zhu Y H,Sun C J,Zhu M Q,et al.Comparisons on photosynthetic physiological characteristics and chlorophyll fluorescence parameters between Populus hopeiensis and Hippophae rhamnoides[J].Journal of Central South University of Forestry&Technology,2015,35(2):26-31.
    [3]姚玉碧,肖国举,王润元,等.近50年来西北半干旱区气候变化特征[J].干旱区地理,2009,32(2):159--165.Yao Y B,Xiao G J,Wang R Y,et al.Climatic changes of semiarid region over the northwest China in recent 50 a[J].Arid Land Geography,2009,32(2):159-165.
    [4]王艳兵,德永军,熊伟,等.华北落叶松夜间树干液流特征及生长季补水格局[J].生态学报,2013,33(5):1375--1385.Wang Y B,De Y J,Xiong W,et al.The characteristics of nocturnal sap flow and stem water recharge pattern in growing season for a Larix principis-rupprechtii plantation[J].Acta Ecologica Sinica,2013,33(5):1375--1385.
    [5]温杰,陈云明,唐亚坤,等.黄土丘陵区油松、沙棘生长旺盛期树干液流密度特征及其影响因素[J].应用生态学报,2017,28(3):763-771.Wen J,Chen Y M,Tang Y K,et al.Characteristics and affecting factors of sap flow density of Pinus tabuliformis and Hippophae rhamnoides in growing season in the hilly region of the Loess Plateau,China[J].Chinese Journal of Applied Ecology,2017,28(3):763--771.
    [6]Granier A.Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309--320.
    [7]Ford C R,Goranson C E,Mitchell R J,et al.Diurnal and seasonal variability in the radial distribution of sap flow:predicting total stem flow in Pinus taeda trees[J].Tree Physiology,2004,24:951-960.
    [8]H9lscher D,Koch O,Korn S,et al.Sap flux of five co-occurring tree species in a temperate broad-leaved forest during seasonal soil drought[J].Trees,2005,19(6):628--637.
    [9]Telander A C,Slesak R A,D’Amato A W,et al.Sap flow of black ash in wetland forests of northern Minnesota,USA:hydrologic implications of tree mortality due to emerald ash borer[J].Agricultural&Forest Meteorology,2015,206:4--11.
    [10]Wal B,Guyot A,Lovelock C E,et al.Influence of temporospatial variation in sap flux density on estimates of whole-tree water use in Avicennia marina[J].Trees,2015,29(1):215-222.
    [11]徐世琴,吉喜斌,金博文.典型荒漠植物沙拐枣茎干液流密度动态及其对环境因子的响应[J].应用生态学报,2016,27(2):345-353.Xu S Q,Ji X B,Jin B W.Dynamics of sap flow density in stems of typical desert shrub Calligonum mongolicum and its responses to environmental variables[J].Chinese Journal of Applied Ecology,2016,27(2):345--353.
    [12]Du S,Wang Y L,Kume T,et al.Sap flow characteristics and climatic responses in three forest species in the semiarid Loess Plateau region of China[J].Agricultural and Forest Meteorology,2011,151:1-10.
    [13]金鹰,王传宽,桑英.三种温带树种树干储存水对蒸腾的贡献[J].植物生态学报,2011,35(12):1310--1317.Jin Y,Wang C K,Sang Y.Contribution of stem water storage to daily transpiration of three temperate trees in northeastern China[J].Chinese Journal of Plant Ecology,2011,35(12):1310-1317.
    [14]Kanalas P,Fenyvesi A,Kis J,et al.Seasonal and diurnal variability in sap flow intensity of mature sessile oak(Quercus petraea(Matt.)Liebl.)trees in relation to microclimatic conditions[J].Acta Biologica Hungarica,2010,61(Suppl.1):95-108.
    [15]孙慧珍,孙龙,王传宽,等.东北东部山区主要树种树干液流研究[J].林业科学,2005,41(3):36--42.Sun H Z,Sun L,Wang C K,et al.Sap flow of the major tree species in the eastern mountainous region in Northeast China[J].Scientia Silvae Sinicae,2005,41(3):36--42.
    [16]徐丹丹,尹立河,侯光才,等.毛乌素沙地旱柳和小叶杨树干液流密度及其与气象因子的关系[J].干旱区研究,2017,34(2):375-382.Xu D D,Yin L H,Hou G C,et al.Relationships between sap flow densities in tree trunks of Salix matsudana and Populus simonii and meteorological factors in the Mu Us Sandland[J].Arid Zone Research,2017,34(2):375--382.
    [17]马履一,王华田.油松边材液流时空变化及其影响因子研究[J].北京林业大学学报,2002,24(3):23-27.Ma L Y,Wang H T.Spatial and chronic fluctuation of sapwood flow and its relevant variables of Pinus tabulaeformis[J].Journal of Beijing Forestry University,2002,24(3):23--27.
    [18]Goldstein G,Andrade J L,Meinzer F C,et al.Stem water storage and diurnal patterns of water use in tropical forest canopy trees[J].Plant Cell&Environment,1998,21(21):397-406.
    [19]Ford C R,Hubbard R M,Kloeppel B D,et al.A comparison of sap flux-based evapotranspiration estimates with catchment-scale water balance[J].Agricultural and Forest Meteorology,2007,145(3/4):176--185.
    [20]赵平,饶兴权,马玲,等.Granier树干液流测定系统在马占相思的水分利用研究中的应用[J].热带亚热带植物学报,2005,13(6):457-468.Zhao P,Rao X Q,Ma L,et al.Application of Granier's sap flow system in water use of Acacia mangium forest[J].Journal of Tropical and Subtropical Botany,2005,13(6):457--468.
    [21]Bu6kováR,Acosta M,DaˇrenováE,et al.Environmental factors influencing the relationship between stem CO2,efflux and sap flow[J].Trees,2015,29(2):333-343.
    [22]杨爱国,张建秋,毕庆玲,等.吉林省西部不同造林密度杨树耗水特性的研究[J].北京林业大学学报,2011,33(6):142--145.Yang A G,Zhang J Q,Bi Q L,et al.Water consumption characteristics of poplar under varied afforestation density in western Jilin Province,northeastern China[J].Journal of Beijing Forestry University,2011,33(6):142-145.
    [23]桑玉强,刘全军,吴文良,等.毛乌素沙地新疆杨生长季节蒸腾耗水规律[J].东北林业大学学报,2008,36(9):28-30.Sang Y Q,Liu Q J,Wu W L,et al.Variation characteristics of transpiring water-consumption of Populus bolleana during growing season in Maowusu Sandy Area[J].Journal of Northeast Forestry University,2008,36(9):28--30.
    [24]赵春彦,司建华,冯起,等.树干液流研究进展与展望[J].西北林学院学报,2015,30(5):98--105.Zhao C Y,Si J H,Feng Q,et al.Research progress and prospect of stem sap flow[J].Journal of Northwest Forestry University,2015,30(5):98-105.
    [25]马长明,马玉洁,程月明.冀西北坝上干旱区北京杨树干液流特征及影响因素分析[J].水土保持学报,2017(6):338--344.Ma C M,Ma Y J,Cheng Y M.Characteristics and the driving forces of sapflow in stems of Populus beijingensis in Bashang Area of North-west Hebei[J].Journal of Soil and Water Conservation,2017(6):338-344.
    [26]鱼腾飞,冯起,司建华,等.胡杨的夜间蒸腾—来自树干液流、叶片气体交换及显微结构的证据[J].北京林业大学学报,2017,39(9):8-16.Yu T F,Feng Q,Si J H,et al.Nocturnal transpiration of Populus euphratica authenticated by measurements of stem sap flux,leaf gas exchange and stomatal microstructure[J].Journal of Beijing Forestry University,2017,39(9):8--16.
    [27]Sánchez-Costa E,Poyatos R,SabatéS.Contrasting growth and water use strategies in four co-occurring Mediterranean tree species revealed by concurrent measurements of sap flow and stem diameter variations[J].Agricultural&Forest Meteorology,2015,207:24-37.
    [28]Daley M J,Phillips N G.Interspecific variation in nighttime transpiration and stomatal conductance in a mixed New England deciduous forest[J].Tree Physiology,2006,26(4):411-419.
    [29]Nakai T,Abe H,Muramoto T,et al.The relationship between sap flow rate and diurnal change of tangential strain on inner bark in Cryptomeria japonica saplings[J].Journal of Wood Science,2005,51(5):441--447.
    [30]Phillips N G,Lewis J D,Logan B A,et al.Inter-and intra-specific variation in nocturnal water transport in Eucalyptus[J].Tree Physiology,2010,30(5):586-96.
    [31]Darby A,Dragulji'c D,Glunk A,et al.Habitat moisture is an important driver of patterns of sap flow and water balance in tropical montane cloud forest epiphytes[J].Oecologia,2016,182(2):357-371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700