用户名: 密码: 验证码:
基于污染物超低排放与蛋白质源污泥增量的污水处理工艺对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative study of wastewater treatment processes based on contaminants removal and protein increment from sludge
  • 作者:支尧 ; 郑凯凯 ; 石岩 ; 张光生 ; 王硕 ; 李激
  • 英文作者:ZHI Yao;ZHENG Kaikai;SHI Yan;ZHANG Guangsheng;WANG Shuo;LI Ji;School of Environment and Civil Engineering,Jiangnan University;Jiangsu SIP Sino French Environmental Technology Limited Company;Jiangsu Key Laboratory of Anaerobic Biotechnology,Jiangnan University;Jiangsu College of Water Treatment Technology and Material Collaborative Innovation Center;
  • 关键词:生物吸附 ; 氮同化 ; 硫铁自养反硝化 ; 污泥蛋白质
  • 英文关键词:biological adsorption;;nitrogen assimilation;;sulfur-iron autotrophic denitrification;;protein sludge
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:江南大学环境与土木工程学院;江苏省苏州工业园区中法环境技术有限公司;江苏省厌氧生物技术重点试验室;江苏高校水处理技术与材料协同创新中心;
  • 出版日期:2017-09-01 15:19
  • 出版单位:环境科学学报
  • 年:2018
  • 期:v.38
  • 基金:国家水体污染控制与治理科技重大专项(No.2015ZX07306-001);; 江苏省重点研发计划(社会发展)科技示范工程项目(No.BE2015622)~~
  • 语种:中文;
  • 页:HJXX201803026
  • 页数:9
  • CN:03
  • ISSN:11-1843/X
  • 分类号:197-205
摘要
为了实现污水处理的深度脱氮除磷及蛋白质源污泥增量,分别采用生物吸附/A~2O和生物吸附/MBR/硫铁自养反硝化工艺进行对比试验研究.结果表明,生物吸附工艺可以快速富集进水中的大部分有机物,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.两套污水处理工艺均获得了优质水质,出水氨氮、总氮和总磷分别达到5、7和0.4 mg·L~(-1)以下.优质碳源投加到A~2O和MBR工艺段,碳源环境的改善使得污泥增长率和氮的同化比例显著提高,第4阶段污泥产率分别达到0.59和0.49 g·g~(-1)(以每g COD产VSS量(g)计),氮的同化率分别达到66%和59%.此外,污泥中蛋白质及氨基酸含量也显著增长,A~2O工艺段增长率分别为34.7%和31.2%,MBR工艺段相应的增长率分别为19.7%和18.3%,实现了蛋白质源污泥的增量,为污泥资源化利用提供了优质原料.
        In order to realize the advanced nitrogen and phosphorus removal in domestic sewage treatment and the increment of protein source in sludge,the comparative study of biological adsorption-A~2O and biological adsorption-MBR-sulfur/iron autotrophic denitrification was carried out. The experimental results show that the majority of organic matter in influent can be rapidly transferred to the sludge through biological adsorption process. The sludge produced during biological adsorption process was then transformed to carbon source by anaerobic fermentation technology,after which the carbon sources were subsequently added to the A~2O and MBR sections. Both two processes achieved high quality effluent,and the effluent concentration of ammonia nitrogen,total nitrogen and total phosphorus were below 5,7 and 0.4 mg·L~(-1),respectively. In addition,the improvement of the carbon source resultes in a significant increase of sludge growth rate and nitrogen assimilation ratio. In the fourth stage,the sludge growth rate and the nitrogen assimilation ratio of the two processes reached 0. 59 g·g~(-1) and 66%,0. 49 g·g~(-1) and 59%,respectively. Moreover,the sludge protein and amino acid contents also significantly increased,the growth rates were 34.7% and 31.2% in A~2O section,and the corresponding growth rate of 19.7% and 18.3% in MBR section,which obtains great increment of protein source in sludge and provides high-quality raw materials for the use of sludge resources.
引文
APHA.1998.Standard Methods for the Examination of Water and Wastewater(20th ed)[M].Washington D C:American Public Health Association
    Barwal A,Chaudhary R.2016.Feasibility study for the treatment o municipal wastewater by using a hybrid bio-solar process[J].Journal of Environmental Management,177:271-277
    曾建忠,林俊岳,刘小兵.2015.剩余污泥常温厌氧发酵制取外加碳源技术研究[J].环境科学与技术,38(8):186-190
    陈伟华,李萍,陈广大,等.2011.从干剩余污泥中提取蛋白质的试验研究[J].地球与环境,39(3):435-439
    Clevenger T E.1990.Safety and efficacy of food processing sludges as animal feed:Chemical characterization[J].Research Journal o the Water Pollution Control Federation,62(6):820-827
    Cui L,Wang K,Kong X.2016.Application of ultra-sonication,acid precipitation and membrane filtration for co-recovery of protein and humic acid from sewage sludge[J].Frontiers of Environmenta Science&Engineering,10(2):327-335
    赵顺顺,孟范平,王震宇.2008.碱水解法提取剩余污泥蛋白质的条件优化[J].城市环境与城市生态,(5):17-20
    郝晓地,张璇蕾,刘然彬,等.2014.剩余污泥转化能源的瓶颈与突破技术[J].中国给水排水,30(18):1-7
    黄满红,李咏梅,顾国维.2009.A2/O系统中碳、氮、磷的物料平衡分析[J].中国给水排水,25(13):41-44
    Huber S,Minnebusch S,Wuertz S,et al.1998.Impact of differen substrates on biomass protein composition during wastewater treatment investigated by two-dimensional electrophoresis[J].Water Science&Technology,37(4/5):363-366
    Hwang J,Zhang L,Seo S,et al.2008.Protein recovery from excess sludge for its use as animal feed[J].Bioresource Technology,99(18):8949-8954
    Kong Z,Li L,Feng C,et al.2016.Comparative investigation on integrated vertical-flow biofilters applying sulfur-based and pyrite-based autotrophic denitrification for domestic wastewater treatment[J].Bioresource Technology,211:125-135
    Lee J K,Choi C K,Lee K H,et al.2008.Mass balance of nitrogen,and estimates of COD,nitrogen and phosphorus used in microbial synthesis as a function of sludge retention time in a sequencing batch reactor system[J].Bioresource Technology,99(16):7788-7796
    Li B,Irvin S.2007.The roles of nitrogen dissimilation and assimilation in biological nitrogen removal treating low,mid,and high strength wastewater[J].Journal of Environmental Engineering and Science,6(5):483-490
    李亚东,李海波.2005.利用剩余活性污泥水解蛋白质制备蛋白质泡沫灭火剂的研究[J].湖北大学学报(自科版),27(1):91-93
    Nkhalambayausi-Chirwa E M L,Moses T.2012.Assessment of nutritional value of single-cell protein from waste-activated sludge as a protein supplement in poultry feed[J].Water Environment Research,84(12):2106-2114
    Park C,Novak J T,Helm R F,et al.2008.Evaluation of the extracellular proteins in full-scale activated sludges[J].Water Research,42(14):3879-3889
    Radjenovic J,Petrovic M,Barcelo D.2009.Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge(CAS)and advanced membrane bioreactor(MBR)treatment[J].Water Research,43(3):831-841
    Ras M,Girbal-Neuhauser E,Paul E,et al.2008.A high yield multimethod extraction protocol for protein quantification in activated sludge[J].Bioresource Technology,99(16):7464-7471
    任争鸣,刘雪洁,苏晓磊,等.2016.硫自养反硝化深度脱氮中试研究[J].中国给水排水,32(19):31-35
    Su W,Tang B,Fu F,et al.2014.A new insight into resource recovery of excess sewage sludge:feasibility of extracting mixed amino acids as an environment-friendly corrosion inhibitor for industrial pickling[J].Journal of Hazardous Materials,279:38-45
    苏晓磊.2015.硫-硫铁填充床用于城市污水深度脱氮除磷的研究[D].北京:清华大学
    苏晓磊,刘雪洁,梁鹏,等.2015.硫-硫铁复合床深度脱氮除磷[J].化学工业与工程,32(4):63-67
    Tadkaew N,Hai F I,Mc Donald J A,et al.2011.Removal of trace organics by MBR treatment:the role of molecular properties[J].Water Research,45(8):2439-2451
    Tanaka S,Kobayashi T,Kamiyama K I,et al.1997.Effects of thermochemical pretreatment on the anaerobic digestion of waste activated sludge[J].Water Science&Technology,35(8):209-215
    唐桂芬.1999.正确运用氨基酸分析结果评定常用蛋白质饲料质量[J].饲料工业,20(7):37-38
    Tchobanoglous G,Burton F L,Stensel H D.2003.Wastewater Engineering:Treatment and Reuse[M].New York,USA:Mc Graw-Hill Higher Education
    汪常青,梁浩,李亚东,等.2006.利用剩余污泥制备泡沫灭火剂的试验研究[J].中国给水排水,22(9):38-42
    Wang J,Zhang J,Xie H,et al.2011.Methane emissions from a full-scale A/A/O wastewater treatment plant[J].Bioresource Technology,102(9):5479-5485
    汪家政.2000.蛋白质技术手册[M].北京:科学出版社
    Wang Y,Bott C,Nerenberg R.2016.Sulfur-based denitrification:Effect of biofilm development on denitrification fluxes[J].Water Research,100:184-193
    Wang Z,Wu Z,Yin X,et al.2008.Membrane fouling in a submerged membrane bioreactor(MBR)under sub-critical flux operation:Membrane foulant and gel layer characterization[J].Journal of Membrane Science,325(1):238-244
    魏小松.2002.AB工艺A段污泥沉降性能、增殖规律及其处理低浓度城市污水效能研究[D].重庆:重庆大学
    Wu D,Ekama G A,Chui H K,et al.2016.Large-scale demonstration of the sulfate reduction autotrophic denitrification nitrification integrated(SANI((R)))process in saline sewage treatment[J].Water Research,100:496-507
    Xiang Y L Wang L,Xiang Y X.2015.Optimization of ultrasonic extraction condition for excess sludge protein using response surface methodology[J].Environmental Engineering and Management Journal,14(5):1151-1159
    Xie B,Liu B,Yi Y,et al.2016.Microbiological mechanism of the improved nitrogen and phosphorus removal by embedding microbial fuel cell in Anaerobic-Anoxic-Oxic wastewater treatment process[J].Bioresource Technology,207:109-117
    薛飞,周维仁.2002.氨基酸分析方法评估蛋白质饲料品质[J].饲料工业,23(7):23-25
    Yan P,Ji F,Wang J,et al.2013.Pilot-scale test of an advanced,integrated wastewater treatment process with sludge reduction,inorganic solids separation,phosphorus recovery,and enhanced nutrient removal(SIPER)[J].Bioresource Technology,142:483-489
    Yan X,Han Y,Li Q,et al.2016.Impact of internal recycle ratio on nitrous oxide generation from anaerobic/anoxic/oxic biological nitrogen removal process[J].Biochemical Engineering Journal,106:11-18
    员小峰.1992.AB法机理探讨[J].中国给水排水,8(2):30-32
    Yucesoy E,Ludemann N,Lucas H,et al.2012.Protein analysis as a measure of active biomass in activated sludge[J].Water Science and Technology,65(8):1483-1489
    Zhang L,Zhang S,Wang S,et al.2013.Enhanced biological nutrient removal in a simultaneous fermentation,denitrification and phosphate removal reactor using primary sludge as internal carbon source[J].Chemosphere,91(5):635-640
    Zhang W,Hou F,Peng Y,et al.2014.Optimizing aeration rate in an external nitrification-denitrifying phosphorus removal(ENDPR)system for domestic wastewater treatment[J].Chemical Engineering Journal,245:342-347
    周光杰,刘宏波,肖航,等.2015.高浓度城市污泥厌氧发酵产酸示范工程的启动与运行[J].中国给水排水,31(15):1-5
    周健,龙腾锐.1999.AB法A段机理及动力学研究现状[J].重庆建筑大学学报,21(6):39-44
    Zhou Z,Wu Z,Wang Z,et al.2011.Simulation and performance evaluation of the anoxic/anaerobic/aerobic process for biological nutrient removal[J].Korean Journal of Chemical Engineering,28(5):1233-1240

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700