用户名: 密码: 验证码:
泰乐菌素的超声波降解效果及机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The efficiency and mechanism of ultrasonic tylosin degradation
  • 作者:舒小华 ; 张倩 ; 杨琛 ; 许子夫 ; 韦惠华 ; 梁英 ; 莫德清
  • 英文作者:SHU Xiao-hua;ZHANG Qian;YANG Chen;XU Zi-fu;WEI Hui-hua;LIANG Ying;MO De-qing;College of Environmental Science and Engineering, Guilin University of Technology;School of Life and Environmental Science, Guilin University of Electronic Technology;College of Environment and Energy, South China University of Technology;
  • 关键词:抗生素 ; 泰乐菌素 ; 超声降解 ; 高级氧化 ; 矿物
  • 英文关键词:antibiotic;;tylosin(TYL);;ultrasonic degradation;;advanced oxidation;;mineral
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:桂林理工大学环境科学与工程学院;桂林电子科技大学生命与环境科学学院;华南理工大学环境与能源学院;
  • 出版日期:2018-02-20
  • 出版单位:农业环境科学学报
  • 年:2018
  • 期:v.37;No.270
  • 基金:国家自然科学基金青年科学基金项目(41501342);; 广西自然科学基金项目(2016GXNSFBA380116)~~
  • 语种:中文;
  • 页:NHBH201802015
  • 页数:9
  • CN:02
  • ISSN:12-1347/S
  • 分类号:125-133
摘要
为研究超声波对水体中大环内酯类抗生素的去除效果,以典型的专用兽药抗生素泰乐菌素(TYL)为研究对象,考察初始浓度、溶液pH值、超声波功率、超声波处理时间对超声波降解效果的影响。在此基础上进一步考察H_2O_2和蒙脱石分别与超声波联合降解TYL的效果,并对TYL的超声波降解机制进行了探讨。结果表明:超声波对TYL有一定的降解效果,在初始浓度10 mg·L~(-1)、pH值11、超声波功率280 W、超声波处理时间90 min的条件下,TYL的降解率为72%。自由基清除剂正丁醇的添加显著抑制了TYL的降解,而且不同超声波功率、超声波处理时间和不同初始浓度及pH值条件下羟基自由基的浓度变化与TYL降解率呈正相关,表明TYL超声波的降解机制可能主要是羟基自由基的氧化。溶液中添加H_2O_2或蒙脱石均对TYL超声波降解产生协同作用,TYL的去除率可分别提高至80.9%和93.9%。H_2O_2可直接氧化TYL、促进·OH生成;蒙脱石的吸附性能及其中少量的铁均可影响溶液中·OH含量。H_2O_2或蒙脱石联合超声波降解TYL的降解效果和降解机制与添加物质的性质密切相关,不能简单归因于羟基自由基的氧化。研究表明,合适的超声波处理方法对大环内酯类抗生素有很好的去除效果,可以考虑将超声波法用于含抗生素废水处理的工艺中。
        In order to study the effect of ultrasonic waves on the removal of macrolide antibiotics from a water body, the influences of the initial concentration, pH value of the solution, ultrasonic power, and ultrasonic treatment time on ultrasonic degradation were investigated using the common veterinary antibiotic, tylosin(TYL). Moreover, combining H_2O_2 or montmorillonite with ultrasonic treatment was carried out in order to investigate the combined function of TYL degradation. On this basis, an ultrasonic degradation mechanism of TYL was also proposed in this paper. The results showed that ultrasonic treatment could degrade TYL effectively. The TYL degradation rate was 72% with an initial concentration of 10 mg·L~(-1) TYL, pH of 11, ultrasonic power of 280 W, and ultrasonic treatment time of 90 min. The ultrasonic degradation of TYL was noticeably inhibited by the addition of the free radical scavenger. Moreover, the concentration of free radicals was positively correlated with the degradation rate of TYL under experimental conditions. These results indicated that the free radical played an important role in the ultrasonic degradation of TYL, and the oxidation of a hydroxyl radical may be the main mechanism of ultrasonic degradation. A synergistic phenomenon for the ultrasonic degradation of TYL was observed after an appropriate amount of H_2O_2/montmorillonite was added to the solution. The degradation efficiency of TYL was enhanced under both conditions. The ultrasonic degradation rate of TYL reached 80.9% and93.9% when H_2O_2 or montmorillonite were combined with ultrasonic treatment, respectively. Direct oxidation and promotion of ·OH occurred in the process of combining H_2O_2 with ultrasonic treatment. For montmorillonite, the synergism mechanism might be due to the effect on ·OH concentration by adsorption characteristics and Fe_2O_3 in montmorillonite. The synergy of combined ultrasound degradation for antibiotics cannot be attributed solely to the oxidation of hydroxyl radicals, and it is closely related to the characteristics of any added substances. The results indicated that macrolide antibiotics could be removed efficiently by an appropriate ultrasound method. The application of ultrasound in the treatment of antibiotics wastewater should be considered.
引文
[1]Ma Y J,Wilson C A,Novak J T,et al.Effect of various sludge digestion conditions on sulfonamide,macrolide,and tetracycline resistance genes and classⅠintegrons[J].Environmental Science&Technology,2011,45(18):7855-7861.
    [2]Gao P P,Mao D Q,Luo Y,et al.Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment[J].Water Research,2012,46(7):2355-2364.
    [3]梁惜梅,施震,黄小平.珠江口典型水产养殖区抗生素的污染特征[J].生态环境学报,2013,22(2):304-310.LIANG Xi-mei,SHI Zhen,HUANG Xiao-ping.Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary[J].Ecology and Environmental Sciences,2013,22(2):304-310.
    [4]Yin X W,Qian Z M,Ben W W,et al.Biodegradation of sulfamethazine by activated sludge:Lab-scale study[J].Journal of Environmental Engineering,2014,140(7):3769-3774.
    [5]Prado N,Ochoa J,Amrane A.Biodegradation by activated sludge and toxicity of tetracycline into a semi-industrial membrane bioreactor[J].Bioresource Technology,2009,100(15):3769-3774.
    [6]Yang S F,Lin C F,Wu C J,et al.Fate of sulfonamide antibiotics in contact with activated sludge sorption and biodegradation[J].Water Research,2012,46(4):1301-1308.
    [7]张军,曾新吾,陈聃,等.水下强声波脉冲负压的产生和空化气泡运动[J].物理学报,2012,61(18):268-278.ZHANG Jun,ZENG Xin-wu,CHEN Dan,et al.Generation of negative pressure of underwater intensive acoustic pulse and cavitation bubble dynamics[J].Acta Physica Sinica,2012,61(18):268-278.
    [8]Bremner D H,Burgess A E,Chand R.The chemistry of ultrasonic degradation of organic compounds[J].Current Organic Chemistry,2011,15(2):168-177.
    [9]Chowdhury P,Viraraghavan T.Sonochemical degradation of chlorinated organic compounds,phenolic compounds and organic dyes:A review[J].Science of the Total Environment,2009,407(8):2474-2492.
    [10]Naddeo V,Meric S,Kassinos D,et al.Fate of pharmaceuticals in contaminated urban wastewater effluent under ultrasonic irradiation[J].Water Research,2009,43(16):4019-4027.
    [11]郭喜丰,肖广全,马丽莉,等.超声波降解四环素类抗生素废水[J].环境工程学报,2014,8(4):1503-1509.GUO Xi-feng,XIAO Guang-quan,MAO Li-li,et al.Ultrasonic degradation of tetracyclines in aqueous solution[J].Chinese Journal of Environmental Engineering,2014,8(4):1503-1509.
    [12]银仁莉.超声联合臭氧技术降解磺胺甲恶唑的研究[D].哈尔滨:哈尔滨工业大学,2014.YIN Ren-li.Study on sulfamethoxazole degradation by ultrasound/ozone oxidation process[D].Harbin:Harbin Institute of Technology,2014.
    [13]魏红,杨虹,高扬,等.超声/K2S2O8体系降解水中左旋氧氟沙星的研究[J].西北农林科技大学学报(自然科学版),2015,43(3):169-174.WEI Hong,YANG Hong,GAO Yang,et al.Degradation of levofloxacin in aqueous soluiton using US/K2S2O8[J].Journal of Northwest A&F Univesity(Natural Science Edition),2015,43(3):169-174.
    [14]葛鑫,郭照冰,祝胜男,等.水中盐酸环丙沙星的超声降解[J].环境工程学报,2015,9(12):5745-5749.GE Xin,GUO Zhao-bing,ZHU Sheng-nan,et al.Ultrasonic degradtion of ciprofloxacin hydrochloride in aqueous solution[J].Chinese Journal of Environmental Engineering,2015,9(12):5745-5749.
    [15]郭照冰,周飞,张超智,等.水中四环素的超声辐照降解[J].环境化学,2012,31(8):1215-1221.GUO Zhao-bing,ZHOU Fei,ZHANG Chao-zhi,et al.Degradation of tetracyclines in aqueous solution by ultrasonic irraddiation[J].Environmental Chemistry,2012,31(8):1215-1221.
    [16]马艳,高乃云,姚娟娟,等.水中盐酸四环素的超声辐照降解[J].华南理工大学学报(自然科学版),2010,38(8):147-152.MAO Yan,GAO Nai-yun,YAO Juan-juan,et al.Degradation of tetracycline hydrochloride in aqueous solution by ultrasonic irraddiation[J].Journal of South China University of Technology(Natural Science Edition),2010,38(8):147-152.
    [17]魏红,李娟,李克斌,等.左氧氟沙星的超声/H2O2联合降解研究[J].中国环境科学,2013,33(2):257-262.WEI Hong,LI Juan,LI Ke-bin,et al.Degradation of levofloxacin by sonolysis-assisted H2O2in aqueous solution[J].China Environmental Science,2013,33(2):257-262.
    [18]Ji G D,Zhang B L,Wu Y C.Combined ultrasound/ozone degradation of carbazole in APG1214surfactant solution[J].Journal of Hazardous Materials,2012,225/226:1-7.
    [19]Guo W Q,Yin R L,Zhou X J,et al.Sulfamethoxazole degradation by ultrasound/ozone oxidation process in water:Kinetics,mechanisms,and pathways[J].Ultrasonics Sonochemistry,2015,22:182-187.
    [20]魏红,李娟,李克斌,等.CCl4对左旋氧氟沙星超声降解的影响[J].高等学校化学学报,2012,33(7):1438-1443.WEI Hong,LI Juan,LI Ke-bin,et al.Effect of CCl4on antibiotics levofloxacin′s ultrasonic degradation[J].Chemical Journal of Chinese University,2012,33(7):1438-1443.
    [21]乔冠磊.环丙沙星的超声波辐照降解研究[D].郑州:郑州大学,2013.QIAO Guan-lei.The study on ultrasonic degradation of ciprofloxacin[D].Zhengzhou:Zhengzhou University,2013.
    [22]田浩廷.蒙脱石促进下水合电子对有机污染物的降解研究[D].南京:南京大学,2016.TIAN Hao-ting.Ehanced degradation of organic contaminants by hydrated electrons on montmorillonite[D].Nanjing:Nanjing University,2016.
    [23]Tong M,Yuan S H,Ma S C,et al.Production of abundant hydroxyl radicals from oxygenation of subsurface sediments[J].Environmental Science&Technology,2016,50(1):214-221.
    [24]Liu X X,Yuan S H,Tong M,et al.Oxidation of trichloroethylene by the hydroxyl radicals produced from oxygenation of reduced nontronite[J].Water Research,2017,113:72-79.
    [25]张倩,杨琛,莫德清,等.水溶液性质对泰乐菌素光降解的影响[J].农业环境科学学报,2014,32(12):2444-2449.ZHANG Qian,YANG Chen,MO De-qing,et al.Effect of aqueous solution properities on tylosin photolysis[J].Journal of Agro-Environment Science,2014,33(12):2444-2449.
    [26]田凯勋,戴友芝,张良长.超声波/零价铁降解对氯苯胺性能及机理研究[J].环境工程学报,2008,2(2):166-169.TIAN Kai-xun,DAI You-zhi,ZHANG Liang-chang.Research on properties and mechanism of pchloroaniline degradated by ultrasound/Fe0[J].Chinese Journal of Environmental Engineering,2008,2(2):166-169.
    [27]孙仁超,田凯勋,杨广超,等.超声波-空气体系对溶液中五氯酚的降解[J].环境工程学报,2016,10(7):3682-3686.SUN Ren-chao,TIAN Kai-xun,YANG Guang-chao,et al.Degradation of pentachlorophenol in aqueous solutions by ultrasonic-air system[J].Chinese Journal of Environmental Engineering,2016,10(7):3682-3686.
    [28]Huang Y H,Huang Y F,Huang C I,et al.Efficient decolorization of azo dye Reactive Black B involving aromatic fragment degradation in buffered Co2+/PMS oxidative processes with a ppb level dosage of Co2+-catalyst[J].Journal of Hazardous Materials,2009,170(2/3):1110-1118.
    [29]Iida Y,Yasui K,Tuziuti T,et al.Sonochemistry and its dosimetry[J].Microchemical Journal,2005,80(2):159-164.
    [30]Adewuyi Y G.Sonochemistry in environmental remediation.1.Combinative and hybrid sonophotochemical oxidation processes for the treatment of pollutants in water[J].Environmental Science&Technology,2005,39(10):3409-3420.
    [31]Song W H,Delacruz A A,Rein K,et al.Ultrasonically induced degradation of microcystin-LR and-RR:Identification of products,effect of p H,formation and destruction of peroxides[J].Environmental Science&Technology,2006,40(12):3941-3946.
    [32]Mahamuni N N,Pandit A B.Effect of additives on ultrasonic degradation of phenol[J].Ultrasonics Sonochemistry,2006,13(2):165-174.
    [33]Shriwas A K,Gogate P R.Ultrasonic degradation of methyl parathion in aqueous solutions:Intensification using additives and scale up aspects[J].Separation and Purification Technology,2011,79(1):1-7.
    [34]Zhang Q,Yang C,Huang W L,et al.Sorption of tylosin on clay minerals[J].Chemosphere,2013,93(9):2180-2186.
    [35]Liang L Y,Hofmann A,Gu B H.Ligand-induced dissolution and release of ferrihydrite colloids[J].Geochimica et Cosmochimica Acta,2000,64(12):2027-2037.
    [36]Jiang C C,Pang S Y,Ouyang F,et al.A new insight into Fenton and Fenton-like processes for water treatment[J].Journal of Hazardous Materials,2010,174(1/2/3):813-817.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700