用户名: 密码: 验证码:
汶川地震对芦山地震孕震环境影响的数值模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation study on the impact of the Wenchuan earthquake to the seismic environment of the Lushan earthquake
  • 作者:郭颖星 ; 祝爱玉 ; 张东宁
  • 英文作者:GUO YingXing;ZHU AiYu;ZHANG DongNing;Institute of Geophysics,China Earthquake Administration;Key Laboratory of Seismic Observation and Geophysical Imaging,China Earthquake Administration;
  • 关键词:汶川地震 ; 芦山地震 ; 孕震环境 ; 库仑破裂应力 ; 数值模拟
  • 英文关键词:Wenchuan earthquake;;Lushan earthquake;;seismic environment;;Coulomb stress;;numerical simulation
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:中国地震局地球物理研究所;中国地震局地震观测与地球物理成像重点实验室;
  • 出版日期:2017-06-20
  • 出版单位:科学通报
  • 年:2017
  • 期:v.62
  • 基金:中国地震局地震行业科研专项(201408014);中国地震局基本业务专项(DQJB16B06);; 国家自然科学基金(41504079)资助
  • 语种:中文;
  • 页:KXTB201717012
  • 页数:14
  • CN:17
  • ISSN:11-1784/N
  • 分类号:94-107
摘要
利用有限元数值模拟方法,以汶川地震和芦山地震的野外地质调查、同震位移和汶川地震前形变观测结果为约束,分析研究了高海拔地形蓄积的重力位能作用下,中地壳低速层的存在以及中央断裂和前山断裂同时破裂的条件下汶川地震的发生对龙门山南段孕震环境的影响.模拟计算结果显示,在一定的模型壳幔介质属性及空间结构下,龙门山断裂带西侧低速层的存在、青藏高原向四川盆地过渡带的地形特征以及汶川地震时中央断裂和前山断裂同时破裂的条件,是控制汶川地震对芦山地震孕震环境影响程度的重要因素.其中,地形和低速层对汶川地震引发的芦山地震孕震环境库仑破裂应力变化的影响最为显著,在所选剖面的北东段,地形特征的影响更为明显,而汶川地震双破裂面的影响则较小.
        The finite element numerical simulation method was used to investigate the impact of the Wenchuan earthquake on the seismic environment of the southern Longmenshan Mountain. The three-dimensional viscoelastic geological model, including the Longmenshan front-range fault, central fault, back-range fault, the Bayan Kala block, and the South China block, was constrained by the results of the geological survey, coseismic dislocation, and the GPS observation of Wenchuan and Lushan earthquakes. We studied how the calculation results were influenced by gravity potential energy caused by high altitude topography, the low velocity layer in the middle crust and the rupture of the Beichuan-Yingxiu and Jiangyou-Guanxian faults, by modifying the parameters of a model. The Wenchuan earthquake was simulated by reducing the Young's modulus of the possible generating fault. We calculated the Coulomb stress of the Dayi blind fault, Dachuang-Shuangshi fault, and the "Y"-shaped blind thrust fault between the two faults above. The simulation results show that the Coulomb stress has a similar distribution on the fault planes of the southern Longmenshan faults zone caused by the Wenchuan earthquake, considering the low-velocity layer or the double-rupture surface. The Coulomb stress on the top of the Dachuan-Shuangshi fault surface was about 0 MPa, and it gradually reduced towards the southwest direction. At the source of the Lushan earthquake, the Coulomb stress was about-0.02 MPa. For the west branch of "Y"-shaped fault, the Coulomb stress on the fault surface was significantly reduced and was about-0.02–-0.03 MPa at the source of the Lushan earthquake; after the Wenchuan earthquake, the Coulomb stress on the east branch of the "Y"-shaped fault plane was about-0.01–0.03 MPa; for the Dayi fault, the Coulomb stress was increasingly obvious on the fault surface from the southwest to the northwest after the Wenchuan earthquake. Therefore, the Wenchuan earthquake could reduce the risk of an earthquake on the Dachuan-Shuangshi fault and the west branch of "Y"-shaped fault earthquake, but it increases the risk on the east branch of "Y"-shaped fault and the Dayi fault. The maximum Coulomb stress near the source was located on the Dayi fault. Considering the terrain and the simultaneous failure of the Beichuan-Yingxiu and Jiangyou-Guanxian, the presence of the low velocity layer increases the Coulomb stress on the four faults, and obviously increases towards the east branch of the "Y"-shaped fault and the Dayi fault. If the terrain and the low velocity layer are considered, compared with only the ruptured Beichuan-Yingxiu fault, the Beichuan-Yingxiu and Jiangyou-Guanxian faults' simultaneous rupture increased the risk of earthquakes on the Dachuan-Shuangshi fault, the east branch of "Y"-shaped fault, and the Dayi hidden fault, but reduced the risk of the west branch of "Y" type fault. In any of the above models, the Coulomb stress changes on the four fault planes of southern Longmenshan Mountains were influenced by terrain. In the case of certain crust, mantle medium properties, and spatial structure, the existence of the low velocity layer on the west of the Longmenshan fault zone, the topographic features of the Qinghai-Tibet Plateau to the Sichuan Basin, and the conditions for the simultaneous rupture of the central fault and the front-range fault during the Wenchuan earthquake, are the important factors that affect the Wenchuan earthquake to the Lushan earthquake. Among them, the terrain and low velocity layer have the most significant influence on the Coulomb failure stress for the area around the Lushan earthquake area caused by the Wenchuan earthquake. The effect of terrain features is more obvious in the north section of the selected section, yet the effect of the Wenchuan earthquake simultaneous rupture planes is smaller.
引文
1 Zhang Y,Feng W P,Xu L S,et al.Spatio-temporal rupture process of the 2008 great Wenchuan earthquake.Sci China Ser D-Earth Sci,2009,52:145-154[张勇,冯万鹏,许力生,等.2008年汶川大地震的时空破裂过程.中国科学D辑:地球科学,2008,38:1186-1194]
    2 Li Y Q,Jia D,Wang M M,et al.Structural geometry of the source region for the 2013 Mw6.6 Lushan earthquake:Implication for earthquake hazard assessment along the Longmen Shan.Earth Planet Sci Lett,2014,390:275-286
    3 Chen Y T,Yang Z X,Zhang Y,et al.From 2008 Wenchuan earthquake to 2013 Lushan earthquake(in Chinese).Sci Sin Terr,2013,43:1064-1072[陈运泰,杨智娴,张勇,等.从汶川地震到芦山地震.中国科学:地球科学,2013,43:1064-1072]
    4 The Lushan Earthquake Scientific Research Editorial Board.The Lushan Earthquake Scientific Research(in Chinese).Beijing:Seismological Press,2015[《芦山地震科学考察》编委会.芦山地震科学考察.北京:地震出版社,2015]
    5 Xu X W,Wen X Z,Han Z J,et al.Lushan Ms7.0 earthquake:A blind reserve-fault event.Chin Sci Bull,2013,58:3437-3443[徐锡伟,闻学泽,韩竹军,等.四川芦山7.0级强震:一次典型的盲逆断层型地震.科学通报,2013,58:1887-1893]
    6 Fang L H,Wu J P,Wang W L,et al.Relocation of the mainshock and aftershock sequences of Ms7.0 Sichuan Lushan earthquake(in Chinese).Chin Sci Bull,2013,58:1901-1909[房立华,吴建平,王未来,等.四川芦山Ms7.0级地震及其余震序列重定位.科学通报,2013,58:1901-1909]
    7 Fang L H,Wu J P,Wang W W,et al.Aftershock observation and analysis of the 2013 Ms7.0 Lushan earthquake.Seismol Res Lett,2015,86:1135-1142
    8 Li Y J,Ye W L.An analysis of the disaster characteristics of the“5.12 Wenchuan earthquake”in Wudu region(in Chinese).J Gansu Sci,2009,21:29-32[李永进,叶伟林.5·12汶川地震在武都区造成灾害的特点分析.甘肃科学学报,2009,21:29-32]
    9 Wang G L,Zhang J H,Liu H S.Investigation and preliminary analysis of geologic disasters in Beichuan county induced by Wenchuan earthquake(in Chinese).Chin J Geol Hazard Control,2009,20:47-51[王根龙,张军慧,刘红帅.汶川地震北川县城地质灾害调查与初步分析.中国地质灾害与防治学报,2009,20:47-51]
    10 Wan Y G,Shen Z K,Sheng S Z,et al.The influence of 2008 Wenchuan earthquake on surrounding faults(in Chinese).Acta Seismol Sin,2009,31:128-139[万永革,沈正康,盛书中,等.2008年汶川大地震对周围断层的影响.地震学报,2009,31:128-139]
    11 Parsons T,Ji C,Kirby E.Stress changes from 2008 Wenchuan earthquake and increased hazard in the Sichuan basin.Nature,2008,454:509-510
    12 Toda S,Lin J,Meghraoui M,et al.12 May 2008 M=7.9 Wenchuan,China,earthquake calculated to increase failure stress and seismicity rate on three major fault systems.Geophys Res Lett,2008,35:L17305
    13 Zhang G H,Shan X J,Li W D.The Coulomb failure stress change associated with the Ms8.0 Wenchuan earthquake and the risk prediction of its surrounding faults(in Chinese).Seismol Geol,2008,30:935-944[张国宏,单新建,李卫东.汶川Ms8.0地震库仑破裂应力变化及断层危险性初步研究.地震地质,2008,30:935-944]
    14 Shi Y L,Cao J L.Some aspects in static stress change calculation--Case study on Wenchuan earthquake(in Chinese).Chin J Geophys,2010,53:102-110[石耀霖,曹建玲.库仑应力计算及应用过程中若干问题的讨论--以汶川地震为例.地球物理学报,2010,53:102-110]
    15 Shi Y L.Some knowledge to the Lushan earthquake(in Chinses).Sci Tech Rev,2013,31:2[石耀霖.我对芦山地震的一些认识.科技导报,2013,31:2]
    16 Liu M,Luo G,Wang H.The 2013 Lushan earthquake in China tests hazard assessments.Seismol Res Lett,2014,85:40-43
    17 Shan B,Xiong X,Zheng Y,et al.Stress changes on major faults caused by 2013 Lushan earthquake and its relationship with 2008Wenchuan earthquake.Sci China Earth Sci,2013,56:1169-1176[单斌,熊熊,郑勇,等.2013年芦山地震导致的周边断层应力变化及其与2008年汶川地震的关系.中国科学:地球科学,2013,43:1002-1009]
    18 Wang C Y,Han W B,Wu J P.Crustal structure beneath the Songpan-Garze orogenic belt(in Chinese).Acta Seismol Sin,2003,25:229-242[王椿镛,韩渭宾,吴建平.松潘-甘孜造山带地壳速度结构.地震学报,2003,25:229-242]
    19 Wang C Y,Lou H,LüZ Y,et al.S-wave crustal and upper mantle’s velocity structure in the eastern Tibetan Plateau-Deep environment of lower crustal flow.Sci China Ser D-Earth Sci,2008,51:263-274[王椿镛,楼海,吕智勇,等.青藏高原东部地壳上地幔S波速度结构--下地壳流的深部环境.中国科学D辑:地球科学,2008,38:22-32]
    20 Zhu J S.The Wenchuan earthquake occurrence background in deep structure and dynamics of lithosphere(in Chinese).J Chengdu Univ Tech,2008,35:348-356[朱介寿.汶川地震的岩石圈深部结构与动力学背景.成都理工大学学报,2008,35:348-356]
    21 Teng J W,Pi J L,Yang H,et al.Wenchuan-Yingxiu Ms8.0 earthquake seismogenic faults and deep dynamic response(in Chinese).Chin J Geophys,2014,57:392-403[滕吉文,皮娇龙,杨辉,等.汶川-映秀Ms8.0地震的发震断裂带和形成的深层动力学响应.地球物理学报,2014,57:392-403]
    22 Xu X W,Wen X Z,Ye J Q,et al.The Ms8.0 Wenchuan earthquake surface ruptures and its seismogenic structure(in Chinese).Seismol Geol,2008,30:597-629[徐锡伟,闻学泽,叶建青,等.汶川Ms8.0地震地表破裂带及其发震构造.地震地质,2008,30:597-629]
    23 Liu J,Zhang Z H,Wen L,et al.The Ms8.0 Wenchuan Earthquake co-seismic rupture and its tectonic implications-An out-of-sequence thrusting event with slip partitioned on multiple faults(in Chinese).Acta Geol Sin,2008,82:1707-1722[刘静,张智慧,文力,等.汶川8级大地震同震破裂的特殊性及构造意义--多条平行断裂同时活动的反序型逆冲地震事件.地质学报,2008,82:1707-1722]
    24 Yang H,Teng J W,Wang Q S,et al.Numerical simulation on the special gravity fields and dynamic response in Longmenshan orogenic belt and adjacent area(in Chinese).Chin J Geophys,2013,56:106-116[杨辉,滕吉文,王谦身,等.龙门山造山带及邻区重力场特征与动力学响应数值模拟.地球物理学报,2013,56:106-116]
    25 Deng Q D,Zhang P Z,Ran Y K,et al.Basic characteristics of active tectonics of China(in Chinese).Sci China Ser D-Earth Sci,2002,32:1020-1031[邓起东,张培震,冉勇康,等.中国活动构造基本特征.中国科学D辑:地球科学,2002,32:1020-1031]
    26 Teng J W,Bai D H,Yang H.Deep processes and dynamic responses associated with the Wenchuan Ms8.0 earthquake of 2008(in Chinese).Chin J Geophys,2008,51:1385-1402[滕吉文,白登海,杨辉.2008汶川Ms8.0地震发生的深层过程和动力学响应.地球物理学报,2008,51:1385-1402]
    27 Zhu S B,Zhang P Z.A study on the dynamical mechanisms of the Wenchuan Ms8.0 earthquake,2008(in Chinese).Chin J Geophys,2009,52:418-427[朱守彪,张培震.2008年汶川Ms8.0地震发生过程的动力学机制研究.地球物理学报,2008,52:418-427]
    28 Li Y S,Wang Y S,Pei X J,et al.Research on tectonic fracturing and causative fault of Lushan earthquake in Sichuan,China(in Chinese).J Chengdu Univ Tech,2013,40:242-249[李渝生,王运生,裴向军,等.“4.20”芦山地震的构造破裂与发震断层.成都理工大学学报,2013,40:242-249]
    29 Department of Earthquake Prediction of China Earthquake Administration.Wenchuan 8.0 Earthquake Science Research Report(in Chinese).Beijing:Seismological Press,2009[中国地震局监测预报司.汶川8.0级地震科学研究报告.北京:地震出版社,2009]
    30 Zhang Y Q,Dong S W,Hou C T,et al.Preliminary study on the seismotectonics of the 2013 Lushan Ms7.0 earthquake,West Sichuan(in Chinese).Acta Geol Sin,2013,87:747-758[张岳桥,董树文,候春堂,等.四川芦山2013年Ms7.0地震发震构造初步研究.地质学报,2013,87:747-758]
    31 Lei X L,Ma S L,Su J R,et al.Inelastic triggering of the 2013 Mw6.6 Lushan earthquake by the 2008 Mw7.9 Wenchuan earthquake(in Chinese).Seismol Geol,2013,35:411-422[雷兴林,马胜利,苏金蓉,等.汶川地震后中下地壳及上地幔的黏弹性效应引起的应力变化与芦山地震的发生机制.地震地质,2013,35:411-422]
    32 Li Y,Zhou R J,Zhao G H,et al.Thrusting and detachment folding of Lushan earthquake in front of Longmenshan Mountains(in Chinese).J Chengdu Univ Tech,2013,40:353-363[李勇,周荣军,赵国华,等.龙门山前缘的芦山地震与逆冲-滑脱褶皱作用.成都理工大学学报,2013,40:353-363]
    33 Zhou R J,Li Y,Su J R,et al.Seismogenic structure of Lushan Mw6.6 earthquake,Sichuan,China(in Chinese).J Chengdu Univ Tech,2013,40:364-370[周荣军,李勇,苏金蓉,等.四川芦山Mw6.6级地震发震构造.成都理工大学学报,2013,40:364-370]
    34 Zhang D N,Yuan S Y,Shen Z K.Numerical simulation of the recent crust movement and the fault activities in Tibetan Plateau(in Chinese).Chin J Geophys,2007,50:153-162[张东宁,袁松涌,沈正康.青藏高原现代地壳运动与活动断裂带关系的模拟实验.地球物理学报,2007,50:153-162]
    35 Teng J W,Yang H,Zhang H S,et al.Wenchuan Ms8.0 earthquake,fine velocity structures of the lithesphere,and dynamical mechanism(in Chinese).Quat Sci,2010,30:637-651[滕吉文,杨辉,张洪双,等.汶川-映秀8.0级大地震的发生与岩石圈精细速度结构和动力机制.第四纪研究,2010,30:637-651]
    36 Ismail-Zadeh A,Mou?l J L L,Soloviev A,et al.Numerical modeling of crustal block-and-fault dynamics,earthquakes and slip rates in the Tibet-Himalayan region.Earth Planet Sci Lett,2007,258:465-485
    37 Luo G,Liu M.Stress evolution and fault interactions before and after the 2008 Great Wenchuan earthquake.Tectonophysics,2010,491:127-140
    38 Wang H,Cao J L,Zhang H,et al.Numerical simulation of the influence of lower-crustal flow on the deformation of the Sichuan-Yunnan region(in Chinese).Acta Seismol Sin,2007,29:581-591[王辉,曹建玲,张怀,等.川滇地区下地壳流动对上地壳运动变形影响的数值模拟.地震学报,2007,29:581-591]
    39 Liu C,Shi Y L,Zhu B J,et al.Crustal rheology control on the mechanism of the earthquake generation at the Longmen Shan fault(in Chinese).Chin J Geophys,2014,57:404-418[柳畅,石耀霖,朱伯靖,等.地壳流变结构控制作用下的龙门山断裂带地震发生机理.地球物理学报,2014,57:404-418]
    40 Zhu A Y,Zhang D N,Jiang C S.Numerical simulation of the relationship between the tectonic stress distribution and the historical strong earthquake activities of the middle-southern segment of eastern boundary of the Sichuan-Yunnan block(in Chinese).Acta Seismol Sin,2015,37:762-773[祝爱玉,张东宁,蒋长胜.川滇地块东边界中南段构造应力分布特征与历史强震活动关系的数值模拟.地震学报,2015,37:762-773]
    41 Automatic Dynamic Incremental Nonlinear Analysis.Theory and Modeling Guide Volume I:ADINA,Report ARD 10-7.Watertown:ANIAD R&D,Inc.,2010
    42 Zhu A Y,Zhang D N,Guo Y X.The numerical simulation on the seismogenic mechanism of the Lushan Ms 7.0 earthquake constrained by deformation observation(in Chinese).Chin J Geophys,2016,59:1661-1672[祝爱玉,张东宁,郭颖星.以形变观测为约束的芦山Ms7.0地震孕震机理数值模拟研究.地球物理学报,2016,59:1661-1672]
    43 Shen Z K,LüJ,Wang M,et al.Contemporary crustal deformation around the southeast borderland of the Tibetan Plateau.J Geophys Res-Solid Earth,2005,110:1-17
    44 Shi Y L,Cao J L.Effective viscosity of China continental lithosphere(in Chinese).Earth Sci Front,2008,15:82-95[石耀霖,曹建玲.中国大陆岩石圈等效粘滞系数的计算和讨论.地学前缘,2008,15:82-95]
    45 Sun Y J,Dong S W,Fan T Y,et al.3D rheological structure of the continental lithosphere beneath China and adjacent regions(in Chinese).Chin J Geophys,2013,56:2936-2946[孙玉军,董树文,范桃园,等.中国大陆及邻区岩石圈三维流变结构.地球物理学报,2013,56:2936-2946]
    46 Stolk W,Kaban M,Beekman F,et al.High resolution regional crustal models from irregularly distributed data:Application to Asia and adjacent areas.Tectonophysics,2013,602:55-68
    47 Zhao J,Jiang Z S,Wu Y Q,et al.Study on fault locking and fault slip deficit of the Longmenshan fault zone before the Wenchuan earthquake(in Chinese).Chin J Geophys,2012,55:2963-2972[赵静,蒋在森,武艳强,等.汶川地震前龙门山断裂带闭锁程度和滑动亏损分布研究.地球物理学报,2012,55:2963-2972]
    48 Meng X G,Bo W Q,Liu Z G,et al.Activity in the middle east of Bayan Har Block with Lushan Ms7.0 earthquake(in Chinese).J Jilin Univ,2014,44:1705-1711[孟宪纲,薄万举,刘志广,等.芦山7.0级地震与巴颜喀拉块体中东段的活动性.吉林大学学报,2014,44:1705-1711]
    49 Li X G,Yu G H,Xu X W.Surface ruptures in bedrock of the Ms8.0 Wenchuan earthquake(in Chinese).Seismol Geol,2008,30:989-995[李细光,于贵华,徐锡伟.汶川Ms8.0地震基岩中的地表破裂.地震地质,2008,30:989-995]
    50 Zhang P Z,Wen X Z,Xu X W,et al.Tectonic model of the great Wenchuan earthquake of May 12,2008,Sichuan,China(in Chinese).Chin Sci Bull,2009,54:944-953[张培震,闻学泽,徐锡伟,等.2008年汶川8.0级特大地震孕育和发生的多单元组合模式.科学通报,2009,54:944-953]
    51 Stein R S,King G C P,Lin J.Change in failures tress on the southern San Andreas fault system caused by the 1992 magnitude=7.4Landers earthquake.Science,1992,258:1328-1332
    52 King G C P,Stein R S,Lin J.Staticstress changes and the triggering of earthquakes.Bull Seismol Soc Amer,1994,84:935-953
    53 Tsuboi C.Earthquake energy,earthquake volume,aftershock area and strength of earth’s crust.J Phys Earthq,1956,4:63-66

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700