用户名: 密码: 验证码:
The dehydroxylation of s
详细信息   在线全文   PDF全文下载
摘要

The thermal transformation, stability field, and reaction kinetics of serpentine minerals (antigorite, chrysotile, and lizardite) have been studied to draw a comprehensive model for their dehydroxylation and recrystallization reactions. In situ X-ray powder diffraction (XRPD) and kinetic studies were combined with transmission electron microscopy (TEM) observations to describe the mechanisms of dehydroxylation and later high-temperature crystallization. During dehydroxylation, a metastable transition phase with a characteristic peak around 9 Å was observed in antigorite and, to a minor extent, in lizardite. Rietveld refinements confirmed that the 9 Å phase actually possesses a talc-like structure. The appearance of this phase is controlled by structure and kinetic factors.

The kinetic parameters and reaction mechanism for lizardite and antigorite dehydroxylation in air at ambient pressure were calculated using the Avrami models and compared to those of chrysotile. For both lizardite and antigorite, the kinetics of dehydroxylation is controlled by diffusion. Apparent activation energy of the reaction in the temperature range 612–708 °C was 221 and 255 kJ/mol for lizardite and antigorite, respectively. The reaction sequences of chrysotile, lizardite, and antigorite leading to the formation of stable high-temperature products (i.e., forsterite and enstatite) are described taking into account previous topotactic and dissolution-recrystallization models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700