用户名: 密码: 验证码:
A computational model of cation ordering in the magnesioferrite-qandilite (MgFe2O4-Mg2TiO4) solid solution and its potential application to titanomagnetite (Fe3O4-Fe2TiO4)
详细信息   在线全文   PDF全文下载
  • journal_title:American Mineralogist
  • Contributor:Richard J. Harrison ; Erika J. Palin ; Natasha Perks
  • Publisher:Mineralogical Society of America
  • Date:2013-04-01
  • Format:text/html
  • Language:en
  • Identifier:10.2138/am.2013.4318
  • journal_abbrev:American Mineralogist
  • issn:0003-004X
  • volume:98
  • issue:4
  • firstpage:698
  • section:Articles
摘要

Cation ordering in the magnesioferrite-qandilite (MgFe2O4-Mg2TiO4) solid solution has been investigated using an interatomic potential model combined with Monte Carlo simulations. The dominant chemical interaction controlling the thermodynamic mixing behavior of the solid solution is a positive nearest-neighbor pairwise interaction between tetrahedrally coordinated Fe3+ and octahedrally coordinated Ti4+ (JTFeOTi). The predicted cation distribution evolves gradually from the Néel-Chevalier model to the Akimoto model as a function of increasing JTFeOTi, with JTFeOTi = 1000 ± 100 K providing an adequate description of both the temperature and composition dependence of the cation distribution and the presence of a miscibility gap. Although Mg is a good analog of Fe2+ in end-member spinels, a comparison of model predictions for MgFe2O4-Mg2TiO4 with observed cation ordering behavior in titanomagnetite (Fe3O4-Fe2TiO4) demonstrates that the analog breaks down for Fe3O4-rich compositions, where a value of JTFeOTi closer to zero is needed to explain the observed cation distribution. It is proposed that screening of Ti4+ by mobile charge carriers on the octahedral sublattice is responsible for the dramatic reduction in JTFeOTi. If confirmed, this conclusion will have significant implications for attempts to create a realistic thermodynamic model of titanomagnetite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700