用户名: 密码: 验证码:
Highly sensitive lable-free electrochemical aptasensor for thrombin detection with cobalt hexacyanoferrate as the electrochemical probe
详细信息    查看全文
  • 作者:Shaoming Yang ; Hong Li ; Wenling Zha ; Qing Sun…
  • 关键词:Cobalt hexacyanoferrates ; Thrombin ; Aptamer ; Electrochemical aptasensor ; Redox probe
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:17
  • 期:10
  • 页码:2603-2610
  • 全文大小:600KB
  • 参考文献:1. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505-10 CrossRef
    2. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818-22 CrossRef
    3. Famulok M, Hartig JS, Mayer G (2007) Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107:3715-743 CrossRef
    4. Peng YG, Zhang DD, Li Y, Qi HL, Gao Q, Zhang CX (2009) Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme basedon target-induced aptamer displacement. Biosens Bioelectron 25:94-9 CrossRef
    5. Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128:2228-229 CrossRef
    6. Chai Y, Tian DY, Cui H (2012) Electrochemiluminescence biosensor for the assay of small molecule and protein based on bifunctionalaptamer and chemiluminescent functionalized gold nanoparticles. Anal Chim Acta 715:86-2 CrossRef
    7. Luo F, Zheng LY, Chen SS, Cai QH, Lin ZY, Qiu B, Chen GN (2012) An aptamer-based fluorescence biosensor for multiplex detection using unmodified gold nanoparticles. Chem Commun 48:6387-389 CrossRef
    8. Jiang L, Yuan R, Chai Y, Yuan Y, Bai L, Wang Y (2012) Aptamer-based highly sensitive electrochemical detection of thrombin via the amplification of graphene. Analyst 137:2415-420 CrossRef
    9. Mir M, Vreeke M, Katakis I (2006) Different strategies to develop an electrochemical thrombin aptasensor. Electrochem Commun 8:505-11 CrossRef
    10. Wang L, Zhu C, Han L, Jin L, Zhou M, Dong S (2011) Label-free, regenerative and sensitive surface plasmon resonance and electrochemical aptasensors based on graphene. Chem Commun 47:7794-796 CrossRef
    11. Bai L, Yuan R, Chai Y, Yuan Y, Mao L, Zhou Y (2011) Highly sensitive electrochemical label-free aptasensor based on dual electrocatalytic amplification of Pt-AuNPs and HRP. Analyst 136:1840-845 CrossRef
    12. Tacconi NR, Rajeshwar K (2003) Metalhexacyanoferrate: electrosynthesis, in situ characterization and applications. Chem Mater 15:3046-062 CrossRef
    13. Li J, Qiu JD, Xu JJ, Chen HY, Xi XH (2007) The Synergistic effect of prussia-blue-grafted carbon nanotube/poly(4-vinylpyridine) composites for amperometric sensing. Adv Funct Mater 17:1574-580 CrossRef
    14. Chen SM (2002) Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate. J Electroanal Chem 521:29-2 CrossRef
    15. Chen SM, Chan CM (2003) Preparation, characterization, and electrocatalytic properties of copper hexacyanoferrate film and bilayer film modified electrodes. J Electroanal Chem 543:161-73 CrossRef
    16. Florescu M, Barsan M, Pauliukaite R, Bretta CMA (2007) Development and application of oxysilane sol–gel electrochemical glucose biosensors based on cobalthexacyanoferrate modified carbon film electrodes. Electroanalysis 19:220-26 CrossRef
    17. Berrettoni M, Gioregetti M, Cox JA, Ranganathan D, Conti P, Zamponi S (2012) Electrochemical synthesis of nano-cobalt hexacyanoferrate at a sol–gel-coated electrode templated with β-cyclodextrin. J Solid State Electrochem 16:2861-866 CrossRef
    18. Senthil Kumar S, Sriman Narayanan S (2006) Amperometric sensor for the determination of ascorbic acid based on cobalt hexacyanoferrate modified electrode fabricated through a new route. Chem Pharm Bull 54:963-67 CrossRef
    19. Yan X, Pan D, Wang H, Bo X, Guo L (2011) Electrochemical determination of L-dopa at cobalt hexacyanoferrate/large-mesopore carbon composite modified electrode. J Electroanal Chem 663:36-2 CrossRef
    20. Li X, Chen Z, Zhong Y, Yang F, Pan J, Liang Y (2012) Cobalt hexacyanoferrate modified multi-walled carbon nanotubes/graphite composite electrode as electrochemical sensor on microfluidic chip. Anal Chim Acta 710:118-24 CrossRef
    21. Yang M, Jiang J, Yang Y, Chen X, Shen G, Yu R (2006) Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors. Biosens Bioelectron 21:1791-797 CrossRef
    22. Pauliukaite R, Florescu M, Brett CMA (2005) Characterization of cobalt-and copper hexacyanoferrate-modified carbon film electrodes for redox-mediated biosensors. J Solid State Electrochem 9:354-62 CrossRef
    23. Pingarron JM, Yanez-Sedeno P, Gonzalez-Cortes A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848-866 CrossRef
    24. Wang J, Li SP, Zhang YZ (2010) A sensitive DNA biosensor fabricated from gold nanoparticles, carbon nanotubes, and zinc oxide nanowires on a glassy carbon electrode. Electrochim Acta 55:4436-440 CrossRef
    25. Li L, Zhao H, Chen Z, Mu X, Guo L (2010) Aptamer-based electrochemical approach to the detection of thrombin by modification of gold nanoparticles. Anal Bioanal Chem 398:563-70 CrossRef
    26. Zheng J, Lin L, Cheng GF, Wang AB, Tan XL, He PG, Fang YZ (2007) Study on an electrochemical biosensor for thrombin recognition based on aptamers and nano particles. Sci China Ser B 50:351-57 CrossRef
    27. Prieto-Simon B, Campas M, Marty JL (2010) Electrochemical aptamer-based sensors. Bioanal Rev 1:141-57 CrossRef
    28. Qi YY, Li BX (2011) A Sensitive, Label-free, aptamer-based biosensor using a gold nanoparticleinitiated chemiluminescence system. Chem Eur J 17:1642-648 CrossRef
    29. Zargoosh K, Chaichi MJ, Shamsipur M, Hossienkhani S, Asghari S, Qandalee M (2012) Highly sensitive glucose biosensor based on the effective immobilization of glucose oxidase/carbon-nanotube and gold nanoparticle in nafion film and peroxyoxalate chemiluminescence reaction of a new fluorophore. Talanta 93:37-3 CrossRef
    30. Mir M, Jenkins ATA, Katakis I (2008) Ultrasensitive detection based on an aptamer beacon electron transfer chain. Electrochem Commun 10:1533-536 CrossRef
    31. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20-2 CrossRef
    32. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Disc Faraday Soc 11:55-5 CrossRef
    33. Liu M, Li P, Cheng Y, Xian Y, Zhang C, Jin L (2004) Determination of thiol compounds in rat striatum microdialysate by HPLC with a nanosized CoHCF-modified electrode. Anal Bioanal Chem 380:742-50 CrossRef
    34. Pournaghi-Azar MH, Sabzi R (2002) Preparation of a cobalt hexacyanoferrate film-modified aluminum electrode by chemical and electrochemical methods: enhanced stability of the electrode in the presence of phosphate and ruthenium(III). J Solid State Electrochem 6:553-59 CrossRef
    35. Ravishankaran D, Sriman Narayanan S (2002) Amperometric sensor for thiosulphate based on cobalt hexacyanoferrate modified electrode. Sensors Actuators B 86:180-84 CrossRef
    36. Deng C, Chen J, Nie Z, Wang M, Chu X, Chen X, Xiao X, Lei C, Yao S (2009) Impedimetric aptasensor with femtomolar sensitivity based on the enlargement of surface-charged gold nanoparticles. Anal Chem 81:739-45 CrossRef
    37. Xu D, Yu X, Liu Z, He W, Ma Z (2005) Label-free electrochemical detection for aptamer-based array electrodes. Anal Chem 77:5107-113 CrossRef
    38. Sun Y, Bai Y, Yang W, Sun C (2007) Controlled multilayer films of sulfonate-capped gold nanoparticles/thionine used for construction of a reagentless bienzymatic glucose biosensor. Electrochim Acta 52:7352-361 CrossRef
    39. Li LD, Zhao HT, Chen ZB, Mu XJ, Guo L (2011) Aptamer biosensor for label-free impedance spectroscopy detection of thrombin based on gold nanoparticles. Sensors Actuators B 157:189-94 CrossRef
    40. Yang H, Ji J, Liu Y, Kong J, Liu B (2009) An aptamer-based biosensor for sensitive thrombin detection. Electrochem Commun 11:38-0 CrossRef
    41. Xie S, Yuan R, Chai Y, Bai L, Yuan Y, Wang Y (2012) Label-free electrochemical aptasensor for sensitive thrombin detection using layer-by-layer self-assembled multilayers with toluidine blue–graphene composites and gold nanoparticles. Talanta 98:7-3 CrossRef
    42. Zhao J, Zhang Y, Li H, Wen Y, Fan X, Lin F, Tan L, Yao S (2011) Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens Bioelectron 26:2297-303 CrossRef
  • 作者单位:Shaoming Yang (1)
    Hong Li (1)
    Wenling Zha (1)
    Qing Sun (1)
    Longzhen Zheng (1)
    Aixi Chen (1)

    1. Department of Chemistry and Chemical Engineering, East China Jiaotong University, 330013, Nanchang, People’s Republic China
  • ISSN:1433-0768
文摘
A highly sensitive label-free electrochemical aptasensor has been constructed for the electrochemical detection of thrombin (TB), where two layers of cobalt hexacyanoferrate (CoHCF) redox probes sandwiched with carbon nanotubes–Nafion were directly immobilized on the electrode surface by electrodeposition. Through the strong interaction between CN?/sup> (CoHCF) and gold nanoparticles (GNPs), GNPs were assembled on the CoHCF-modified electrode for the immobilization of thiolated thrombin aptamers (TBA). In the presence of target TB, TBA on the electrode surface could catch TB to form TBA–TB complex, which made a barrier for the electron transfer, resulting in a greater decrease in CoHCF redox probe signals. Thus, the proposed aptasensor showed a high sensitivity and a much wider linearity to TB in the range of 1.0?pg/mL?~-.0?μg/mL with a detection limit of 0.28?pg/mL.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700