用户名: 密码: 验证码:
Gelatin microparticles aggregates as three-dimensional scaffolding system in cartilage engineering
详细信息    查看全文
  • 作者:D. M. García Cruz (1)
    V. Sardinha (1) (2) (3)
    J. L. Escobar Ivirico (1)
    J. F. Mano (2) (3)
    J. L. Gómez Ribelles (1) (4)
  • 刊名:Journal of Materials Science Materials in Medicine
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:24
  • 期:2
  • 页码:503-513
  • 全文大小:972KB
  • 参考文献:1. Danisovic L, Varga I, Zamborsky R, Bohmer D. The tissue engineering of articular cartilage: cells, scaffolds and stimulating factors. Exp Biol Med. 2012;237(1):10-. CrossRef
    2. Darling EM, Athanasiou KA. Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J Orthop Res. 2005;23:425-2. j.orthres.2004.08.008">CrossRef
    3. Oliveira MB, Mano JF. Polymer-based microparticles in tissue engineering and regenerative medicine. Biotechnol Prog. 2011;27(4):897-12. CrossRef
    4. Zhang R, Xue M, Yang J, Tan T. A novel injectable and in situ crosslinked hydrogel based on hyaluronic acid and α, β-polyaspartylhydrazide. J Appl Polym Sci. 2012;125(2):1116-6. CrossRef
    5. Hou Q, Chau DYS, Pratoomsoot C, Tighe PJ, Dua HS, Shakesheff KM, et al. In situ gelling hydrogels incorporating microparticles as drug delivery carriers for regenerative medicine. J Pharm Sci. 2008;97(9):3972-0. jps.21310">CrossRef
    6. Singh A, Suri S, Roy K. In situ crosslinking hydrogels for combinatorial delivery of chemokines and siRNA–DNA carrying microparticles to dendritic cells. Biomaterials. 2009;30(28):5187-00. j.biomaterials.2009.06.001">CrossRef
    7. Bidarra SJ, Barrias CC, Fonseca KB, Barbosa MA, Soares RA, Granja PL. Injectable in situ crosslinkable RGD-modified alginate matrix for endothelial cells delivery. Biomaterials. 2011;32(31):7897-04. j.biomaterials.2011.07.013">CrossRef
    8. Zheng Shu X, Liu Y, Palumbo FS, Luo Y, Prestwich GD. In situ crosslinkable hyaluronan hydrogels for tissue engineering. Biomaterials. 2004;25(7-):1339-8. j.biomaterials.2003.08.014">CrossRef
    9. Fan HB, Zhang CL, Li J, Bi L, Qin L, Wu H, et al. Gelatin microspheres containing TGF-beta 3 enhance the chondrogenesis of mesenchymal stem cells in modified pellet culture. Biomacromolecules. 2008;9(3):927-4. CrossRef
    10. Han YS, Wei YY, Wang SS, Song Y. Cartilage regeneration using adipose-derived stem cells and the controlled-released hybrid microspheres. Jt Bone Spine. 2010;77(1):27-1. j.jbspin.2009.05.013">CrossRef
    11. Park H, Temenoff JS, Tabata Y, Caplan AI, Mikos AG. Injectable biodegradable hydrogel composites for rabbit marrow mesenchymal stem cell and growth factor delivery for cartilage tissue engineering. Biomaterials. 2007;28(21):3217-7. j.biomaterials.2007.03.030">CrossRef
    12. Hu XH, Zhou J, Zhang N, Tan HP, Gao CY. Preparation and properties of an injectable scaffold of poly(lactic-co-glycolic acid) microparticles/chitosan hydrogel. J Mech Behav Biomed Mater. 2008;1(4):352-. j.jmbbm.2008.02.001">CrossRef
    13. Tan HP, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan–hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials. 2009;30(13):2499-06. j.biomaterials.2008.12.080">CrossRef
    14. Malda J, Kreijveld E, Temenoff JS, van Blitterswijk CA, Riesle J. Expansion of human nasal chondrocytes on macroporous microcarriers enhances redifferentiation. Biomaterials. 2003;24(28):5153-1. CrossRef
    15. Glattauer V, White JF, Tsai WB, Tsai CC, Tebb TA, Danon SJ, et al. Preparation of resorbable collagen-based beads for direct use in tissue engineering and cell therapy applications. J Biomed Mater Res Part A. 2010;92A(4):1301-.
    16. Pettersson S, Wettero J, Tengvall P, Kratz G. Human articular chondrocytes on macroporous gelatin microcarriers form structurally stable constructs with blood-derived biological glues in vitro. J Tissue Eng Regen Med. 2009;3(6):450-0. CrossRef
    17. Fan HB, Hu YY, Qin L, Li XS, Wu H, Lv R. Porous gelatin–chondroitin–hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-beta 1 induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair. J Biomed Mater Res Part A. 2006;77A(4):785-4. jbm.a.30647">CrossRef
    18. García Cruz DM, Escobar Ivirico JL, Gomes MM, Gómez Ribelles JL, Sánchez, Reis RL, et al. Chitosan microparticles as injectable scaffolds for tissue engineering. J Tissue Eng Regen Med. 2008;2(6):378-0. CrossRef
    19. Leane MM, Nankervis R, Smith A, Illum L. Use of the ninhydrin assay to measure the release of chitosan from oral solid dosage forms. Int J Pharm. 2004;271(1-):241-. j.ijpharm.2003.11.023">CrossRef
    20. Pérez Olmedilla M, Garcia-Giralt N, Pradas MM, Ruiz PB, Gómez Ribelles JL, Palou EC, et al. Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials. 2006;27(7):1003-2. j.biomaterials.2005.07.030">CrossRef
    21. Alves da Silva ML, Crawford A, Mundy JM, Correlo VM, Sol P, Bhattacharya M, et al. Chitosan/polyester-based scaffolds for cartilage tissue engineering: Assessment of extracellular matrix formation. Acta Biomaterialia. 2010;6(3):1149-7. j.actbio.2009.09.006">CrossRef
    22. Smith GD, Knutsen G, Richardson JB. A clinical review of cartilage repair techniques. J Bone Jt Surg Br Vol. 2005;87B(4):445-.
    23. Nehrer S, Domayer S, Dorotka R, Schatz K, Bindreiter U, Kotz R. Three-year clinical outcome after chondrocyte transplantation using a hyaluronan matrix for cartilage repair. Eur J Radiol. 2006;57(1):3-. j.ejrad.2005.08.005">CrossRef
    24. Brittberg M, Peterson L, Sjogren-Jansson E, Tallheden T, Lindahl A. Articular cartilage engineering with autologous chondrocyte transplantation—A review of recent developments. J Bone Jt Surg Am Vol. 2003;85A:109-5.
    25. Martinez-Diaz S, Garcia-Giralt N, Lebourg M, Gomez-Tejedor JA, Vila G, Caceres E, et al. In vivo evaluation of 3-dimensional polycaprolactone scaffolds for cartilage repair in rabbits. Am J Sports Med. 2010;38(3):509-9. CrossRef
    26. Pfander D, Rahmanzadeh R, Scheller EE. Presence and distribution of collagen II, collagen I, fibronectin, and tenascin in rabbit normal and osteoarthritic cartilage. J Rheumatol. 1999;26:386-4.
    27. Huch K, Mordstein V, Stove J, Nerlich AG, Arnholdt H, Delling G, et al. Expression of collagen type I, II, X and Ki-67 in osteochondroma compared to human growth plate cartilage. Eur J Histochem. 2002;46(3):249-8.
    28. Gohring AR, Lubke C, Andreas K, Haupl T, Sittinger M, Ringe J, et al. Tissue-engineered cartilage of porcine and human origin as in vitro test system in arthritis research. Biotechnol Prog. 2010;26(4):1116-5.
    29. Tritz J, Rahouadj R, de Isla N, Charif N, Pinzano A, Mainard D, et al. Designing a three-dimensional alginate hydrogel by spraying method for cartilage tissue engineering. Soft Matter. 2010;6(20):5165-4. CrossRef
    30. Elisseeff J, McIntosh W, Fu K, Blunk T, Langer R. Controlled-release of IGF-I and TGF-β1 in a photopolymerizing hydrogel for cartilage tissue engineering. J Orthop Res. 2001;19(6):1098-04. CrossRef
    31. Park H, Temenoff JS, Holland TA, Tabata Y, Mikos AG. Delivery of TGF-beta 1 and chondrocytes via injectable, biodegradable hydrogels for cartilage tissue engineering applications. Biomaterials. 2005;26(34):7095-03. doi:10.1016/j.biomaterials.2005.05.083 . j.biomaterials.2005.05.083">CrossRef
    32. Hwang NS, Varghese S, Zhang Z, Elisseeff J. Chondrogenic differentiation of human embryonic stem cell―Derived cells in arginine–glycine–aspartate―Modified hydrogels. Tissue Eng. 2006;12(9):2695-06. CrossRef
    33. Riley SL, Dutt S, de la Torre R, Chen AC, Sah RL, Ratcliffe A. Formulation of PEG-based hydrogels affects tissue-engineered cartilage construct characteristics. J Mater Sci Mater Med. 2001;12(10):983-0. CrossRef
    34. Chao P-HG, Yodmuang S, Wang X, Sun L, Kaplan DL, Vunjak-Novakovic G. Silk hydrogel for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater. 2010;95B(1):84-0. jbm.b.31686">CrossRef
    35. Nishi C, Nakajima N, Ikada Y. In vitro evaluation of cytotoxicity of diepoxy compounds used for biomaterial modification. J Biomed Mater Res. 1995;29(7):829-4. jbm.820290707">CrossRef
    36. Wang C, Lau TT, Loh WL, Su K, Wang D-A. Cytocompatibility study of a natural biomaterial crosslinker—Genipin with therapeutic model cells. J Biomed Mater Res B Appl Biomater. 2011;97B(1):58-5. jbm.b.31786">CrossRef
    37. Lima EG, Tan AR, Tai T, Marra KG, DeFail A, Ateshian GA, et al. Genipin enhances the mechanical properties of tissue-engineered cartilage and protects against inflammatory degradation when used as a medium supplement. J Biomed Mater Res Part A. 2009;91A(3):692-00. jbm.a.32305">CrossRef
    38. Solorio L, Zwolinski C, Lund AW, Farrell MJ, Stegemann JP. Gelatin microspheres crosslinked with genipin for local delivery of growth factors. J Tissue Eng Regen Med. 2010;4(7):514-3. CrossRef
    39. Lau TT, Wang C, Wang D-A. Cell delivery with genipin crosslinked gelatin microspheres in hydrogel/microcarrier composite. Compos Sci Technol. 2010;70(13):1909-4. j.compscitech.2010.05.015">CrossRef
    40. Solorio LD, Vieregge EL, Dhami CD, Dang PN, Alsberg E. Engineered cartilage via self-assembled hMSC sheets with incorporated biodegradable gelatin microspheres releasing transforming growth factor-b1. J Controlled Release. 2012;158(2):224-2. j.jconrel.2011.11.003">CrossRef
    41. Yamamoto M, Ikada Y, Tabata Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001;12(1):77-8. CrossRef
    42. Catelas I, Dwyer JF, Helgerson S. Controlled release of bioactive transforming growth factor beta-1 from fibrin gels in vitro. Tissue Eng Part C Method. 2008;14(2):119-8. CrossRef
  • 作者单位:D. M. García Cruz (1)
    V. Sardinha (1) (2) (3)
    J. L. Escobar Ivirico (1)
    J. F. Mano (2) (3)
    J. L. Gómez Ribelles (1) (4)

    1. Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
    2. 3B’s Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, S. Claúdio do Barco, Taipas, 4806-909, Guimar?es, Portugal
    3. ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimar?es, Portugal
    4. Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
  • ISSN:1573-4838
文摘
A three-dimensional (3D) scaffolding system for chondrocytes culture has been produced by agglomeration of cells and gelatin microparticles with a mild centrifuging process. The diameter of the microparticles, around 10?μ, was selected to be in the order of magnitude of the chondrocytes. No gel was used to stabilize the construct that maintained consistency just because of cell and extracellular matrix (ECM) adhesion to the substrate. In one series of samples the microparticles were charged with transforming growth factor, TGF-β1. The kinetics of growth factor delivery was assessed. The initial delivery was approximately 48?% of the total amount delivered up to day 14. Chondrocytes that had been previously expanded in monolayer culture, and thus dedifferentiated, adopted in this 3D environment a round morphology, both with presence or absence of growth factor delivery, with production of ECM that intermingles with gelatin particles. The pellet was stable from the first day of culture. Cell viability was assessed by MTS assay, showing higher absorption values in the cell/unloaded gelatin microparticle pellets than in cell pellets up to day 7. Nevertheless the absorption drops in the following culture times. On the contrary the cell viability of cell/TGF-β1 loaded gelatin microparticle pellets was constant during the 21?days of culture. The formation of actin stress fibres in the cytoskeleton and type I collagen expression was significantly reduced in both cell/gelatin microparticle pellets (with and without TGF-β1) with respect to cell pellet controls. Total type II collagen and sulphated glycosaminoglycans quantification show an enhancement of the production of ECM when TGF-β1 is delivered, as expected because this growth factor stimulate the chondrocyte proliferation and improve the functionality of the tissue.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700