用户名: 密码: 验证码:
Ionic and elemental composition of PMplus-plus">2.5 aerosols over the Caribbean Sea in the Tropical Atlantic
详细信息    查看全文
文摘
To characterize atmospheric particulate matter equal or less than 2.5 μm in diameter (PM2.5) over the Tropical Atlantic Ocean, aerosol sampling was carried out in Puerto Rico during August and September, 2006. Aerosols were analyzed by ion chromatography for water-soluble inorganic and organic ions (including Na+, NH4+, Mg2+, Ca2+, K+, Cl−p>, SO42−p>, NH4+, F−p>, methanesulfonate (MSA), and oxalate), by inductive coupled plasma mass spectrometry (ICPMS) for trace elements (Al, Fe, Zn, Mn, Cu, Ni, V, Pb, Cr, Sb, Co, Sc, Cd), and by scanning electron microscopy for individual aerosol particle composition and morphology. The results show that the dominant cations in aerosols were Na+, (mean: 631 ng m−3), accounting for 63.8 % of the total cation and NH4+ (mean: 164 ng m−3), accounting for 13.8 % of the total cation measured in this study. The main inorganic anions were Cl−p> (576 ng m−3, 54.1 %) and SO42−p> (596 ng m−3, 38.0 %). The main organic anion was oxalate (18 ng m−3). Crustal enrichment factor calculations identified 62 % of the trace elements measured (Cu, Ni, V, Co, Al, Mn, Fe, Sc, and Cr) with crustal origin. Single particle analysis demonstrated that 40 % of the aerosol particles examined were Cl−p> rich particles as sodium chloride from seawater and 34 % of the total particles were Si-rich particles, mainly in the form of aluminosilicates from dust material. Based on the combination of air-mass trajectories, cluster analysis and principal component analysis, the major sources of these PM2.5 particles include marine, Saharan dust and biomass burning from West Africa; however, volcanic emissions from the Soufriere Hills in Montserrat had significant impact on aerosol composition in this region at the time of sample collection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700