用户名: 密码: 验证码:
Molecular stacking character and charge transport properties of tetrabenzoheptacenes derivatives: the effects of nitrogen doping and phenyl substitution
详细信息    查看全文
  • 作者:Lin Guan ; Wenliang Wang ; Rong Shao ; Fengyi Liu ; Shiwei Yin
  • 关键词:Charge transport ; Density functional theory ; Mobility ; Tetrabenzoheptacene
  • 刊名:Journal of Molecular Modeling
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:21
  • 期:5
  • 全文大小:1,511 KB
  • 参考文献:1.Tang CW, Vanslyke SA (1987) Appl Phys Lett 5:913–915CrossRef
    2.Slyke SAV, Chen CH, Tang CW (1996) Appl Phys Lett 69:2160–2162CrossRef
    3.Mas-Torrent M, Rovira C (2008) Chem Soc Rev 37:827–838CrossRef
    4.Shirota Y, Kageyama H (2007) Chem Rev 107:953–1010CrossRef
    5.Garnier F (1998) Chem Phys 227:253–262CrossRef
    6.Klauk H (2010) Chem Soc Rev 39:2643–2666CrossRef
    7.Lin Y, Li YF, Zhan XW (2012) Chem Soc Rev 41:4245–4272CrossRef
    8.Hains AW, Liang ZQ, Woodhouse MA, Gregg BA (2010) Chem Rev 110:6689–6735CrossRef
    9.O’Neill M, Kelly SM (2011) Adv Mater 23:566–584CrossRef
    10.Anthony JE (2008) Angew Chem Int Ed Engl 47:452–483CrossRef
    11.Anthony JE (2006) Chem Rev 106:5028–5048CrossRef
    12.Bendikov M, Wudl F (2004) Chem Rev 104:4891–4945CrossRef
    13.Kivelson S, Chapman OL (1983) Phys Rev B 28:7236–7243CrossRef
    14.Kertesz M, Lee YS, Stewart JJP (1989) Int J Quantum Chem 35:305–313CrossRef
    15.Biermann D, Schmidt W (1980) J Am Chem Soc 102:3163–3173CrossRef
    16.Mateo-Alonso A (2014) Chem Soc Rev 43:6311–6324CrossRef
    17.More S, Bhosale R, Choudhary S, Mateo-Alonso A (2012) Org Lett 14:4170–4173CrossRef
    18.Choudhary S, Gozalvez C, Higelin A, Krossing I, Melle-Franco M, Mateo-Alonso A (2014) Chem Eur J 20:1525–1528CrossRef
    19.More S, Bhosale R, Mateo-Alonso A (2014) Chem Eur J 20:10626–10631CrossRef
    20.Kulisic N, More S, Mateo-Alonso A (2011) Chem Commun 47:514–516CrossRef
    21.Clar E (1964) Polycyclic hydrocarbons. Springer, London, p 200
    22.Duong HM, Bendikov M, Steiger D, Zhang QC, Sonmez G, Yamada J, Wudl F (2003) Org Lett 5:4433–4436CrossRef
    23.Mateo-Alonso A, Kulisic N, Valenti G, Marcaccio M, Paolucci F, Prato M (2010) Chem Asian J 5:482–485CrossRef
    24.Tauber MJ, Kelley RF, Giaimo JM, Rybtchinski B, Wasielewski MR (2006) J Am Chem Soc 128:1782–1783CrossRef
    25.Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Bredas J-L (2007) Chem Rev 107:926–952CrossRef
    26.Wu QX, Geng Y, Liao Y, Tang XD, Yang GC, Su ZM (2012) Theor Chem Acc 131:1121–1129CrossRef
    27.Zhao CB, Wang WL, Yin SW, Ma Y (2013) New J Chem 37:2925–2934CrossRef
    28.Zhao CB, Guo YL, Guan L, Ge HG, Yin SW, Wang WL (2014) Synth Met 188:146–155CrossRef
    29.Marcus RA (1993) Rev Mod Phys 65:599–610CrossRef
    30.Hush NS (1958) J Chem Phys 28:962–972CrossRef
    31.Bredas JL, Calbert JP, da Silva Filho DA (2002) J Cornil Proc Natl Acad Sci USA 99:5804–5809CrossRef
    32.Cornil J, Lemaur V, Calbert J-P, Bredas J-L (2002) Adv Mater 14:726–729CrossRef
    33.Zhang YX, Cai X, Bian YZ, Li XY, Jiang JZ (2008) J Phys Chem C 112:5148–5159CrossRef
    34.Huang J-D, Wen S-H, Deng W-Q, Han K-L (2011) J Phys Chem B 115:2140–2147CrossRef
    35.Peng Q, Yi YP, Shuai ZG, Shao JS (2007) J Am Chem Soc 129:9333–9339CrossRef
    36.Nan GJ, Yang XD, Wang LJ, Shuai ZG, Zhao Y (2009) Phys Rev B 79:115203–115211CrossRef
    37.Yin SW, Li LL, Yang YM, Reimers JR (2012) J Phys Chem C 116:14826–14836CrossRef
    38.Norton JE, Bredas J-L (2008) J Am Chem Soc 130:12377–12384CrossRef
    39.Brovchenko IV (1997) Chem Phys Lett 278:355–359CrossRef
    40.McMahon DP, Troisi A (2010) J Phys Chem Lett 1:941–946CrossRef
    41.Malagoli M, Bredas JL (2000) Chem Phys Lett 327:13–17CrossRef
    42.Lemaur V, da Silva Filho DA, Coropceanu V, Lehmann M, Geerts Y, Piris J, Debije MG, van de Craats AM, Senthilkumar K, Siebbeles LDA, Warman JM, Bredas J-L, Cornil J (2004) J Am Chem Soc 126:3271–3279CrossRef
    43.Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, CossiM SG, RegaN PGA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2010) Gaussian 09, Revision C.01. Gaussian, Inc, Wallingford
    44.Kuo M-Y, Chen H-Y, Chao I (2007) Chem Eur J 13:4750–4758CrossRef
    45.Geng Y, Wang JP, Wu SX, Li HB, Yu F, Yang GC, Gao HZ, Shuai ZG (2011) J Mater Chem 21:134–143CrossRef
    46.Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Chem Mater 20:3205–3211CrossRef
    47.Yang XD, Li QK, Shuai ZG (2007) Nanotechnology 18:424029–424034CrossRef
    48.Schein LB (1979) Phys Rev B 20:1631–1639CrossRef
    49.Li CH, Huang CH, Kuo MY (2011) Phys Chem Chem Phys 13:11148–11155CrossRef
    50.Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRef
    51.Becke AD (1993) J Chem Phys 98:5648–5652CrossRef
    52.O’Boyle NM, Tenderholt AL, Langner KM (2008) J Comput Chem 29:839–845CrossRef
    53.Song YB, Di CA, Yang XD, Li SP, Xu W, Liu YQ, Yang LM, Shuai ZG, Zhang DQ, Zhu DB (2006) J Am Chem Soc 128:15940–15941CrossRef
    54.Huang JS, Kertesz M (2004) Chem Phys Lett 390:110–115CrossRef
    55.Gao H-Z (2010) Synth Met 160:2104–2108CrossRef
    56.Winkler M, Houk KN (2007) J Am Chem Soc 129:1805–1815CrossRef
    57.He ZK, Mao RX, Liu DQ, Miao Q (2012) Org Lett 14:4190–4193CrossRef
    58.Chen HY, Chao I (2006) Chem Phys Chem 7:2003–2007
    59.Tang M, Oh JH, Reichardt AD, Bao Z (2009) J Am Chem Soc 131:3733–3740CrossRef
    60.Chen X-K, Guo J-F, Zou L-Y, Ren A-M, Fan J-X (2011) J Phys Chem C 115:21416–21428CrossRef
    61.Yasuda T, Goto T, Fujita K, Tsutsui T (2004) Appl Phys Lett 85:2098–2100CrossRef
    62.Michaelson HB (1977) J Appl Phys 48:4729–4733CrossRef
  • 作者单位:Lin Guan (1)
    Wenliang Wang (1)
    Rong Shao (1)
    Fengyi Liu (1)
    Shiwei Yin (1)

    1. Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, Shaanxi, 710062, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Computer Applications in Chemistry
    Biomedicine
    Molecular Medicine
    Health Informatics and Administration
    Life Sciences
    Computer Application in Life Sciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:0948-5023
文摘
The nitrogen doping and phenyl substitution effects on the geometries, molecular stacking character, electronic, and charge transport properties of tetrabenzoheptacene (TTBH) have been investigated by means of density functional theory (DFT) calculation and incoherent charge hopping model. Our results indicate that the nitrogen doping (TTH) at the 6,8,15,17 positions improves its stability in air and the ability of electron injection and in the meantime slightly changes the molecular stacking due to the C-H···N interaction. For both TTBH and TTH, large hole transport mobility (μ h ) and electron transport mobility (μ e ), which are on the same order of magnitude, are given rise by their dense displaced π-stacking in crystal. Comparatively, the phenyl substitution (Ph-TTBH) at the 6,8,15,17 positions adopts a non-planar conformation, adverse to close packing and therefore leads to smaller electron/hole transport mobility (μ) than those of TTBH and TTH. The calculations suggest TTBH and TTH are promising candidates for excellent ambipolar OFET materials.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700