用户名: 密码: 验证码:
Basic criterion for the formation of self-organized dislocation patterns in fatigued FCC pure metals
详细信息    查看全文
  • 作者:Peng Li ; Shouxin Li ; Zhongguang Wang ; Zhefeng Zhang
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:58
  • 期:12
  • 页码:921-928
  • 全文大小:1,045 KB
  • 参考文献:1.Hirth JP, Lothe J. Theory of Dislocation (2nd edition). New York: Wiley, 1982
    2.Woods PJ. Low-amplitude fatigue of copper and copper-5 at.% aluminium single crystals. Philos Mag, 1973, 28: 155–191CrossRef
    3.Mughrabi H, Ackermann F, Herz K. Persistent slip bands in fatigued face-centered and body-centered cubic metals. In: Fong JT (ed.). Fatigue Mechanisms. Philadelphia: ASTM, 1979, 69–105CrossRef
    4.Winter AT. Dislocation structure in the interior of a fatigued copper polycrystal. Acta Metall, 1980, 28: 963–964CrossRef
    5.Zhang JX, Jiang YY. An experimental study of the formation of typical dislocation patterns in polycrystalline copper under cyclic shear. Acta Mater, 2007, 55: 1831–1842CrossRef
    6.Mughrabi H. The cyclic hardening and saturation behaviour of copper single crystals. Mater Sci Eng, 1978, 33: 207–223CrossRef
    7.Gomez-Garcia D, Devincre B, Kubin LP. D islocation patterns and the similitude principle: 2.5D mesoscale simulations. Phys Rev Lett, 2006, 96: 125503CrossRef
    8.Ananthakrishna G. Current theoretical approaches to collective behavior of dislocations. Phys Rep, 2007, 440: 113–259CrossRef
    9.Wilsdorf DK. Dislocation behavior in fatigue IV. Quantitative interpretation of friction stress and back stress derived from hysteresis loops. Mater Sci Eng, 1979, 39: 231–245
    10.Walgraef D, Aifantis EC. Dislocation patterning in fatigued metals as a result of dynamical instabilities. J Appl Phys, 1985, 58: 688–691CrossRef
    11.Antonopoulos JG, Winter AT. Weak-beam study of dislocation structures in fatigued copper. Philos Mag, 1976, 33: 87–95CrossRef
    12.Antonopoulos JG, Brown LM, Winter AT. Vacancy dipoles in fatigued copper. Philos Mag, 1976, 34: 549–563CrossRef
    13.Bretschneider J, Holste C, Tippelt B. Cyclic plasticity of nickel single crystals at elevated temperatures. Acta Mater, 1997, 45: 3775–3783CrossRef
    14.Li P, Zhang ZF, Li SX, Wang ZG. Effect of orientations on cyclic deformation behavior of Ag and Cu single crystals: cyclic stressstrain curve and slip morphology. Acta Mater, 2008, 56: 2212–2222CrossRef
    15.Li P, Zhang ZF, Li XW, Li SX, Wang ZG. Effect of orientation on the cyclic deformation behavior of silver single crystals: comparison with the behavior of copper and nickel single crystals. Acta Mater, 2009, 57: 4845–4854CrossRef
    16.Li P, Zhang ZF, Li SX, Wang ZG. Formation mechanisms of cyclic saturation dislocation patterns in [001], [011] and [111] copper single crystals. Acta Mater, 2010, 58: 3281–3294CrossRef
    17.Li P, Li SX, Wang ZG, Zhang ZF. Dislocation arrangements in cyclically deformed Au single crystal. Mater Sci Eng A, 2010, 527: 6244–6247CrossRef
    18.Wang ZR. Cyclic deformation response of planar-slip materials and a new criterion for the wavy-to-planar-slip transition. Philos Mag, 2004, 84: 351–379CrossRef
    19.Rester M, Motz C, Pippan R. Stacking fault energy and indentation size effect: do they interact? Scripta Mater, 2008, 58: 187–190CrossRef
    20.Murr LE. Interfacial Phenomena in Metals and alloys. Addison Wesley, Reading MA, 1975
    21.Li P, Zhang ZF, Li SX, Wang ZG. Fundamental factors on formation mechanism of dislocation arrangements in cyclically deformed fcc single crystal. Prog Mater Sci, 2011, 56: 328–377CrossRef
    22.Li P, Zhang ZF, Li SX, Wang ZG. Comparison of dislocation patterns in cyclically deformed fcc metals. Scripta Mater, 2008, 59: 730–733CrossRef
    23.Wolf K, Gudladt HJ, Calderon HA, Kostorz G. Transition between planar and wavy slip in cyclically deformed short-range ordered alloys. Acta Metall Mater, 1994, 42: 3759–3765CrossRef
    24.Hou ZS, Lu GX. Principles of Metallography. Sahnghai: Shanghai Scientific & Techincal Publishers, 1990
    25.Zhai T, Martin JW, Briggs GAD. Fatigue damage at room temperature in aluminium single crystals—II. TEM. Acta Mater, 1996, 44: 1729–1739CrossRef
    26.Hahner P. Stochastic dislocation patterning during cyclic plastic deformation. Appl Phys A, 1996, 63: 45–55CrossRef
    27.Wilsdorf DK. Advancing towards constitutive equations for the metal industry via the LEDS theory. Metall Mater Trans A, 2004, 35: 369–418CrossRef
    28.Mughrabi H. Dislocation wall and cell structures and long-range internal stresses in deformed metal crystals. Acta Metall, 1983, 31: 1367–1379CrossRef
    29.Hazzledine P. Work hardening in easy glide. Can J Phys, 1967, 45: 765–775CrossRef
    30.Neuhäuser H, Arkan OB, Potthoff HH. Dislocation multipoles and estimation of frictional stress in f.c.c. copper alloys. Mater Sci Eng, 1986, 81: 201–209CrossRef
    31.Neumann P. Fatigue. In: Cahn RW, Hassen P (eds.). Physical Metallurgy. Amsterdam: Elsevier Science, 1983, 1554–1593
    32.Yang DZ. Dislocation and Metal Strengthening Mechanism. Harbin: Harbin Institute of Technology Press, 1991
    33.Wider T, Hansen S, Holzwarth U, Maier K. The sensitivity of positron annihilation to plastic deformation. Phys Rev B, 1998, 57: 5126–5139CrossRef
    34.El-Madhoun Y, Mohamed A, Bassim MN. Cyclic stress-strain response and dislocation structures in polycrystalline aluminum. Mater Sci Eng A, 2003, 359: 220–227CrossRef
  • 作者单位:Peng Li (1)
    Shouxin Li (1)
    Zhongguang Wang (1)
    Zhefeng Zhang (1)

    1. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
Based on a large number of experimental results available, it is found that not all the fatigued face-centered-cubic (FCC) pure metals can form the classical persistent slip band (PSB)-ladder structure. The formation of the regular dislocation patterns, especially the PSB ladders, follows one unified principle on the dislocation aggregation and evolution. According to the principle, a simple criterion based on stacking fault energy is proposed to judge whether or not the regular PSB ladders in different FCC pure metals can form. 中文摘要 大量的实验结果表明并非所有面心立方纯金属都会在疲劳后形成典型的驻留滑移带(PSB)梯状结构. 规则位错组态的形成, 特别是PSB梯结构的形成遵循位错聚集与演化的统一准则. 基于这一准则, 本文提出了以层错能为基础的简单判据, 用以解释不同面心 立方纯金属中规则PSB梯结构的形成与否.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700