用户名: 密码: 验证码:
Mass spectrometry-based proteomic approaches to study pathogenic bacteria-host interactions
详细信息    查看全文
  • 作者:Yufei Yang (1)
    Mo Hu (1)
    Kaiwen Yu (1)
    Xiangmei Zeng (1)
    Xiaoyun Liu (1)

    1. Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center
    ; College of Chemistry and Molecular Engineering ; Peking University ; Beijing ; 100871 ; China
  • 关键词:mass spectrometry ; proteomics ; bacterial infection ; host ; pathogen interactions
  • 刊名:Protein & Cell
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:6
  • 期:4
  • 页码:265-274
  • 全文大小:428 KB
  • 参考文献:1. Adkins, JN, Mottaz, HM, Norbeck, AD, Gustin, JK, Rue, J, Clauss, TRW, Purvine, SO, Rodland, KD, Heffron, F, Smith, RD (2006) Analysis of the Salmonella Typhimurium proteome through environmental response toward infectious conditions. Mol Cell Proteomics 5: pp. 1450-1461 CrossRef
    2. Albrethsen, J, Agner, J, Piersma, SR, Hojrup, P, Pham, TV, Weldingh, K, Jimenez, CR, Andersen, P, Rosenkrands, I (2013) Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin-antitoxin systems. Mol Cell Proteomics 12: pp. 1180-1191 CrossRef
    3. Ansong, C, Yoon, H, Norbeck, AD, Gustin, JK, McDermott, JE, Mottaz, HM, Rue, J, Adkins, JN, Heffron, F, Smith, RD (2008) Proteomics analysis of the causative agent of typhoid fever. J Proteome Res 7: pp. 546-557 CrossRef
    4. Ansong, C, Yoon, H, Porwollik, S, Mottaz-Brewer, H, Petritis, BO, Jaitly, N, Adkins, JN, McClelland, M, Heffron, F, Smith, RD (2009) Global systems-level analysis of Hfq and SmpB deletion mutants in Salmonella: implications for virulence and global protein translation. PLoS One 4: pp. e4809 CrossRef
    5. Becker, D, Selbach, M, Rollenhagen, C, Ballmaier, M, Meyer, TF, Mann, M, Bumann, D (2006) Robust Salmonella metabolism limits possibilities for new antimicrobials. Nature 440: pp. 303-307 CrossRef
    6. Brown, RN, Sanford, JA, Park, JH, Deatherage, BL, Champion, BL, Smith, RD, Heffron, F, Adkins, JN (2012) A comprehensive subcellular proteomic survey of Salmonella grown under phagosome-mimicking versus standard laboratory conditions. Int J Proteomics 2012: pp. 123076 CrossRef
    7. Bumann, D (2009) System-level analysis of Salmonella metabolism during infection. Curr Opin Microbiol 12: pp. 559-567 CrossRef
    8. Cash, P (2011) Investigating pathogen biology at the level of the proteome. Proteomics 11: pp. 3190-3202 CrossRef
    9. Cossart, P, Sansonetti, PJ (2004) Bacterial invasion: The paradigms of enteroinvasive pathogens. Science 304: pp. 242-248 CrossRef
    10. Cravatt, BF, Simon, GM, Yates, JR (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450: pp. 991-1000 CrossRef
    11. Cui, J, Yao, Q, Li, S, Ding, X, Lu, Q, Mao, H, Liu, L, Zheng, N, Chen, S, Shao, F (2010) Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329: pp. 1215-1218 CrossRef
    12. Curreem, SO, Watt, RM, Lau, SK, Woo, PC (2012) Two-dimensional gel electrophoresis in bacterial proteomics. Protein Cell 3: pp. 346-363 CrossRef
    13. Pasqua, R, Mamone, G, Ferranti, P, Ercolini, D, Mauriello, G (2010) Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 10: pp. 1040-1049
    14. Ding, C, Jiang, J, Wei, J, Liu, W, Zhang, W, Liu, M, Fu, T, Lu, T, Song, L, Ying, W (2013) A fast workflow for identification and quantification of proteomes. Mol Cell Proteomics 12: pp. 2370-2380 CrossRef
    15. Engel, P, Goepfert, A, Stanger, FV, Harms, A, Schmidt, A, Schirmer, T, Dehio, C (2012) Adenylylation control by intra- or intermolecular active-site obstruction in Fic proteins. Nature 482: pp. 107-110 CrossRef
    16. Fernandez-Arenas, E, Cabezon, V, Bermejo, C, Arroyo, J, Nombela, C, Diez-Orejas, R, Gil, C (2007) Intergrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction. Mol Cell Proteomics 6: pp. 460-478 CrossRef
    17. Fields, BS, Benson, RF, Besser, RE (2002) Legionella and Legionnaires鈥?disease: 25聽years of investigation. Clin Microbiol Rev 15: pp. 506-526 CrossRef
    18. Galan, JE, Wolf-Watz, H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: pp. 567-573 CrossRef
    19. Geiger, T, Wehner, A, Schaab, C, Cox, J, Mann, M (2012) Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11: pp. 014050
    20. Gygi, SP, Rist, B, Gerber, SA, Turecek, F, Gelb, MH, Aebersold, R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechol 17: pp. 994-999 CrossRef
    21. Haraga, A, Ohlson, MB, Miller, SI (2008) Salmonellae interplay with host cells. Nat Rev Microbiol 6: pp. 53-66 CrossRef
    22. Hardwidge, PR, Rodriguez-Escudero, I, Goode, D, Donohoe, S, Eng, J, Goodlett, DR, Aebersold, R, Finlay, BB (2004) Proteomic analysis of the intestinal epithelial cell response to enteropathogenic Escherichia coli. J Biol Chem 279: pp. 20127-20136 CrossRef
    23. Hartlova, A, Krocova, Z, Cerveny, L, Stulik, J (2011) A proteomic view of the host-pathogen interaction: the host perspective. Proteomics 11: pp. 3212-3220 CrossRef
    24. Hoffmann, C, Finsel, I, Otto, A, Pfaffinger, G, Rothmeier, E, Hecker, M, Becher, D, Hilbi, H (2014) Functional analysis of novel Rab GTPase identified in the proteome of purified Legionella-containing vacuoles from macrophages. Cell Microbiol 16: pp. 1034-1052 CrossRef
    25. Imami, K, Bhavsar, AP, Yu, H, Brown, NF, Rogers, LD, Finlay, BB, Foster, LJ (2013) Global impact of Salmonella Pathogenicity Island 2-secreted effectors on the host phosphoproteome. Mol Cell Proteomics 12: pp. 1632-1643 CrossRef
    26. Ingmundson, A, Delprato, A, Lambright, DG, Roy, CR (2007) Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450: pp. 365-369 CrossRef
    27. Jafari, M, Primo, V, Smejkal, GB, Moskovets, EV, Kuo, WP, Ivanov, AR (2012) Comparison of in-gel protein separation techniques commonly used for fractionation in mass spectrometry-based proteomic profiling. Electrophoresis 33: pp. 2516-2526 CrossRef
    28. Jenner, RG, Young, RA (2005) Insights into host responses against pathogens from transcriptional profiling. Nat Rev Microbiol 3: pp. 281-294 CrossRef
    29. Kaper, JB, Nataro, JP, Mobley, HLT (2004) Pathogenic Escherichia coli. Nat Rev Microbiol 2: pp. 123-140 CrossRef
    30. Khabbaz, RF, Moseley, RR, Steiner, RJ, Levitt, AM, Bell, BP (2014) Challenges of infectious diseases in the USA. Lancet 384: pp. 53-63 CrossRef
    31. Kim, K, Yang, E, Vu, GP, Gong, H, Su, J, Liu, F, Lu, S (2010) Mass spectrometry-based quantitative proteomic analysis of Salmonella enterica serovar enteritidis protein expression upon exposure to hydrogen peroxide. BMC Microbiol 10: pp. 166 CrossRef
    32. Kotloff, KL, Winichoff, JP, Ivanoff, B, Clemens, JD, Swerdlow, DL, Sansonetti, PJ, Adak, GK, Levine, MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77: pp. 651-666
    33. Kuntumalla, S, Zhang, Q, Braisted, JC, Fleischmann, RD, Peterson, SN, Donohue-Rolfe, A, Tzipori, S, Pieper, R (2011) In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism. BMC Microbiol 11: pp. 147 CrossRef
    34. Li, Q (2011) Phagosome proteomics: a powerful tool to assess bacteria-mediated immunomodulation. Bioeng Bugs 2: pp. 194-198 CrossRef
    35. Li, H, Xu, H, Zhou, Y, Zhang, J, Long, C, Li, S, Chen, S, Zhou, J, Shao, F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315: pp. 1000-1003 CrossRef
    36. Li, S, Zhang, L, Yao, Q, Li, L, Dong, N, Rong, J, Gao, W, Ding, X, Sun, L, Chen, X (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501: pp. 242-246 CrossRef
    37. Liu, X, Gao, B, Novik, V, Galan, JE (2012) Quantitative proteomics of intracellular Campylobacter jejuni reveals metabolic reprogramming. PLoS Pathog 8: pp. e1002562 CrossRef
    38. Machner, MP, Isberg, RR (2007) A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318: pp. 974-977 CrossRef
    39. Mukherjee, S, Liu, X, Arasaki, K, McDonough, J, Galan, JE, Roy, CR (2011) Modulation of Rab GTPase function by a protein phosphocholine transferase. Nature 477: pp. 103-106 CrossRef
    40. Muller, MP, Peters, H, Bluemer, J, Blankenfeldt, W, Goody, RS, Itzen, A (2010) The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329: pp. 946-949 CrossRef
    41. Murata, T, Delprato, A, Ingmundson, A, Toomre, DK, Lambright, DG, Roy, CR (2006) The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat Cell Biol 8: pp. 971-977 CrossRef
    42. Neunuebel, MR, Chen, Y, Gasper, AH, Backlund, PS, Yergey, A, Machner, MP (2011) De-AMPylation of the small GTPase Rab1 by the pathogen Legionella pneumophila. Science 333: pp. 453-456 CrossRef
    43. Ohl, ME, Miller, SI (2001) Salmonella: a model for bacterial pathogenesis. Annu Rev Med 52: pp. 259-274 CrossRef
    44. Paape, D, Lippuner, C, Schmid, M, Ackermann, R, Barrios-Llerena, ME, Zimny-Arndt, U, Brinkmann, V, Arndt, B, Pleissner, KP, Jungblut, PR (2008) Transgenic, fluorescent Leishmania mexicana allow direct analysis of the proteome of intracellular amastigotes. Mol Cell Proteomics 7: pp. 1688-1701 CrossRef
    45. Pieper, R, Zhang, Q, Parmar, PP, Huang, ST, Clark, DJ, Alami, H, Donohue-Rolfe, A, Fleischmann, RD, Peterson, SN, Tzipori, S (2009) The Shigella dysenteriae serotype 1 proteome, profiled in the host intestinal environment, reveals major metabolic modifications and increased expression of invasive proteins. Proteomics 9: pp. 5029-5045 CrossRef
    46. Pieper, R, Fisher, CR, Suh, MJ, Huang, ST, Parmar, P, Payne, SM (2013) Analysis of the proteome of intracellular Shigella flexneri reveals pathways important for intracellular growth. Infect Immun 81: pp. 4635-4648 CrossRef
    47. Rabilloud, T, Chevallet, M, Luche, S, Lelong, C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73: pp. 2064-2077 CrossRef
    48. Rogers, LD, Brown, NF, Fang, Y, Pelech, S, Foster, LJ (2011) Phosphoproteomic Analysis of Salmonella-infected cells identifies key kinase regulators and SopB-dependent host phosphorylation events. Sci Signal 4: pp. 1-13
    49. Salomon, D, Orth, K (2013) What pathogens have taught us about posttranslational modifications. Cell Host Microbe 14: pp. 269-279 CrossRef
    50. Schmidt, F, Volker, U (2011) Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics 11: pp. 3203-3211 CrossRef
    51. Schmutz, C, Ahrne, E, Kasper, CA, Tschon, T, Sorg, I, Dreier, RF, Schmidt, A, Arrieumerlou, C (2013) Systems-level overview of host protein phosphorylation during Shigella flexneri infection revealed by phosphoproteomics. Mol Cell Proteomics 12: pp. 2952-2968 CrossRef
    52. Schoebel, S, Oesterlin, LK, Blankenfeldt, W, Goody, RS, Itzen, A (2009) RabGDI displacement by DrrA from Legionella is a consequence of its guanine nucleotide exchange activity. Mol Cell 36: pp. 1060-1072 CrossRef
    53. Sengupta, N, Alam, SI (2011) In vivo studies of Clostridium perfringens in mouse gas gangrene model. Curr Microbiol 62: pp. 999-1008 CrossRef
    54. Sherwood, RK, Roy, CR (2013) A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe 14: pp. 256-268 CrossRef
    55. Shi, L, Adkins, JN, Coleman, JR, Schepmoes, AA, Dohnkova, A, Mottaz, HM, Norbeck, AD, Purvine, SO, Manes, NP, Smallwood, HS (2006) Proteomic analysis of Salmonella enterica serovar Typhimurium isolated from RAW 264.7 macrophages - Identification of a novel protein that contributes to the replication of serovar Typhimurium inside macrophages. J Biol Chem 281: pp. 29131-29140 CrossRef
    56. Shi, L, Ansong, C, Smallwood, H, Rommereim, L, McDermott, JE, Brewer, HM, Norbeck, AD, Taylor, RC, Gustin, JK, Heffron, F (2009) Proteome of Salmonella enterica serotype Typhimurium grown in a low Mg/pH medium. J Proteomics Bioinform 2: pp. 388-397 CrossRef
    57. Shi, L, Chowdhury, SM, Smallwood, HS, Yoon, H, Mottaz-Brewer, HM, Norbeck, AD, McDermott, JE, Clauss, TRW, Heffron, F, Smith, RD (2009) Proteomic investigation of the time course responses of RAW 264.7 macrophages to infection with Salmonella enterica. Infect Immun 77: pp. 3227-3233 CrossRef
    58. Sonck, KAJ, Kint, G, Schoofs, G, Vander Wauven, C, Vanderleyden, J, Keersmaecker, SCJ (2009) The proteome of Salmonella Typhimurium grown under in vivo-mimicking conditions. Proteomics 9: pp. 565-579 CrossRef
    59. Stancik, LM, Stancik, DM, Schmidt, B, Barnhart, DM, Yoncheva, YN, Slonczewski, JL (2002) pH-dependent expression of periplasmic proteins and amino acid catabolism in Escherichia coli. J Bacteriol 184: pp. 4246-4258 CrossRef
    60. Suh, MJ, Kuntumalla, S, Yu, Y, Pieper, R (2014) Proteomes of pathogenic Escherichia coli/Shigella group surveyed in their host environments. Expert Rev Proteomics 11: pp. 593-609 CrossRef
    61. Tan, Y, Luo, Z (2011) Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475: pp. 506-509 CrossRef
    62. Tan, Y, Arnold, RJ, Luo, Z (2011) Legionella pneumophila regulates the small GTPase Rab1 activity by reversible phosphorylcholination. Proc Natl Acad Sci USA 108: pp. 21212-21217 CrossRef
    63. Thingholm, TE, Jensen, ON, Larsen, MR (2009) Analytical strategies for phosphoproteomics. Proteomics 9: pp. 1451-1468 CrossRef
    64. Twine, SM, Mykytczuk, NCS, Petit, MD, Shen, H, Sjostedt, A, Conlan, JW, Kelly, JF (2006) In vivo proteomic analysis of the intracellular bacterial pathogen, Francisella tularensis, isolated from mouse spleen. Biochem Biophys Res Commun 345: pp. 1621-1633 CrossRef
    65. Urwyler, S, Nyfeler, Y, Ragaz, C, Lee, H, Mueller, LN, Aeversold, R, Hilbi, H (2009) Proteome analysis of Legiobella vacuoles purified by magnetic immunoseparation reveals secretory and endosomal GTPases. Traffic 10: pp. 76-87 CrossRef
    66. Walduck, A, Rudel, T, Meyer, TF (2004) Proteomic and gene profiling approaches to study host responses to bacterial infection. Curr Opin Microbiol 7: pp. 33-38 CrossRef
    67. Weber, A, Kogl, SA, Jung, K (2006) Time-dependent proteome alterations under osmotic stress during aerobic and anaerobic growth in Escherichia coli. J Bacteriol 188: pp. 7165-7175 CrossRef
    68. Weekes, MP, Tomasec, P, Huttlin, EL, Fielding, CA, Nusinow, D, Stanton, RJ, Wang, EC, Aicheler, R, Murrell, I, Wilkinson, GW (2014) Quantitative temporal viromics: an approach to investigate host-pathogen interaction. Cell 157: pp. 1460-1472 CrossRef
    69. Worby, CA, Mattoo, S, Kruger, RP, Corbeil, LB, Koller, A, Mendez, JC, Zekarias, B, Lazar, C, Dixon, JE (2009) The fic domain: regulation of cell signaling by adenylylation. Mol Cell 34: pp. 93-103 CrossRef
    70. Yarbrough, ML, Li, Y, Kinch, LN, Grishin, NV, Ball, HL, Orth, K (2009) AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323: pp. 269-272 CrossRef
    71. Yohannes, E, Barnhart, DM, Slonczewski, JL (2004) pH-dependent catabolic protein expression during anaerobic growth of Escherichia coli K-12. J Bacteriol 186: pp. 192-199 CrossRef
    72. Yu, J, Guo, L (2011) Quantitative proteomic analysis of Salmonella enterica serovar Typhimurium under PhoP/PhoQ activation conditions. J Proteome Res 10: pp. 2992-3002 CrossRef
    73. Zhang, CG, Chromy, BA, McCutchen-Maloney, SL (2005) Host-pathogen interactions: a proteomic view. Expert Rev Proteomics 2: pp. 187-202 CrossRef
    74. Zhang, L, Ding, X, Cui, J, Xu, H, Chen, J, Gong, Y, Hu, L, Zhou, Y, Ge, J, Lu, Q (2011) Cysteine methylation disrupts ubiquitin-chain sensing in NF-魏B activation. Nature 481: pp. 204-208 CrossRef
    75. Zhu, L, Zhao, G, Stein, R, Zheng, X, Hu, W, Shang, N, Bu, X, Liu, X, Wang, J, Feng, E (2010) The proteome of Shigella flexneri 2a 2457T grown at 30 and 37掳. Mol Cell Proteomics 9: pp. 1209-1220 CrossRef
  • 刊物主题:Biochemistry, general; Protein Science; Cell Biology; Stem Cells; Human Genetics; Developmental Biology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1674-8018
文摘
Elucidation of molecular mechanisms underlying host-pathogen interactions is important for control and treatment of infectious diseases worldwide. Within the last decade, mass spectrometry (MS)-based proteomics has become a powerful and effective approach to better understand complex and dynamic host-pathogen interactions at the protein level. Herein we will review the recent progress in proteomic analyses towards bacterial infection of their mammalian host with a particular focus on enteric pathogens. Large-scale studies of dynamic proteomic alterations during infection will be discussed from the perspective of both pathogenic bacteria and host cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700