用户名: 密码: 验证码:
Transfer of microRNAs by extracellular membrane microvesicles: a nascent crosstalk model in tumor pathogenesis, especially tumor cell-microenvironment interactions
详细信息    查看全文
  • 作者:Li Zhang (1)
    C Alexander Valencia (2) (3)
    Biao Dong (3)
    Meng Chen (4)
    Pu-Jun Guan (1)
    Ling Pan (1)

    1. Department of Hematology
    ; West China Hospital ; Sichuan University ; Chengdu ; 610041 ; China
    2. Division of Human Genetics
    ; Cincinnati Children鈥檚 Hospital Medical Center ; Cincinnati ; Ohio ; 45229 ; USA
    3. Department of Pediatrics
    ; University of Cincinnati College of Medicine ; Cincinnati ; Ohio ; 45229 ; USA
    4. State Key Laboratory of Biotherapy
    ; West China Hospital ; Sichuan University ; Chengdu ; 610041 ; China
  • 关键词:Microvesicle ; Exosome ; MicroRNA ; miRNA ; Tumor ; Microenvironment
  • 刊名:Journal of Hematology & Oncology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:523 KB
  • 参考文献:1. John, SP (2008) Retinal and choroidal angiogenesis. Springer, Berlin
    2. Lord, EM, Penney, DP, Sutherland, RM, Cooper, RA (1979) Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo. Virchows Arch B Cell Pathol Incl Mol Pathol. 31: pp. 103-16 CrossRef
    3. Verloes, R, Kanarek, L (1976) Tumour microenvironment studies open new perspectives for immunotherapy. Arch Int Physiol Biochim. 84: pp. 420-2
    4. Ra, W (1948) Pathology of tumours. Butterworth, London
    5. Greenfield, JP, Cobb, WS, Lyden, D (2010) Resisting arrest: a switch from angiogenesis to vasculogenesis in recurrent malignant gliomas. J Clin Invest. 120: pp. 663-7 CrossRef
    6. Lyden, D, Hattori, K, Dias, S, Costa, C, Blaikie, P, Butros, L (2001) Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Nat Med. 7: pp. 1194-201 CrossRef
    7. Streubel, B, Chott, A, Huber, D, Exner, M, Jager, U, Wagner, O (2004) Lymphoma-specific genetic aberrations in microvascular endothelial cells in B-cell lymphomas. N Engl J Med. 351: pp. 250-9 CrossRef
    8. Hida, K, Klagsbrun, M (2005) A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res. 65: pp. 2507-10 CrossRef
    9. Rigolin, GM, Fraulini, C, Ciccone, M, Mauro, E, Bugli, AM, Angeli, C (2006) Neoplastic circulating endothelial cells in multiple myeloma with 13q14 deletion. Blood. 107: pp. 2531-5 CrossRef
    10. Akers, JC, Gonda, D, Kim, R, Carter, BS, Chen, CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol. 113: pp. 1-11 CrossRef
    11. Camussi, G, Deregibus, MC, Bruno, S, Cantaluppi, V, Biancone, L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 78: pp. 838-48 CrossRef
    12. Ghosh, AK, Secreto, CR, Knox, TR, Ding, W, Mukhopadhyay, D, Kay, NE (2010) Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood. 115: pp. 1755-64 CrossRef
    13. Balaj, L, Lessard, R, Dai, L, Cho, YJ, Pomeroy, SL, Breakefield, XO (2011) Tumour microvesicles contain retrotransposon elements and amplified oncogene sequences. Nat Commun. 2: pp. 180 CrossRef
    14. Chargaff, E, West, R (1946) The biological significance of the thromboplastic protein of blood. J Bio Chem 166: pp. 189-97
    15. Wolf, P (1967) The nature and significance of platelet products in human plasma. Br J Haematol. 13: pp. 269-88 CrossRef
    16. Johnstone, RM, Adam, M, Hammond, JR, Orr, L, Turbide, C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Bio Chem 262: pp. 9412-20
    17. Robbins, PD, Morelli, AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol. 14: pp. 195-208 CrossRef
    18. Malkki, H (2014) Neuro-oncology: novel biomarkers for high-grade astrocytoma. Nat Rev Neurol. 10: pp. 121 CrossRef
    19. Lemoinne, S, Thabut, D, Housset, C, Moreau, R, Valla, D, Boulanger, CM (2014) The emerging roles of microvesicles in liver diseases. Nat Rev Gastroenterol Hepatol. 11: pp. 350-61 CrossRef
    20. Salih, M, Zietse, R, Hoorn, EJ (2014) Urinary extracellular vesicles and the kidney: biomarkers and beyond. Am J Physiol 306: pp. F1251-9
    21. Thery C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3 22.
    22. Huang, X, Yuan, T, Tschannen, M, Sun, Z, Jacob, H, Du, M (2013) Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genomics. 14: pp. 319 CrossRef
    23. Lewis, BP, Shih, IH, Jones-Rhoades, MW, Bartel, DP, Burge, CB (2003) Prediction of mammalian microRNA targets. Cell. 115: pp. 787-98 CrossRef
    24. Lewis, BP, Burge, CB, Bartel, DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 120: pp. 15-20 CrossRef
    25. John, B, Enright, AJ, Aravin, A, Tuschl, T, Sander, C, Marks, DS (2004) Human microRNA targets. PLoS Biol. 2: pp. e363 CrossRef
    26. Valadi, H, Ekstrom, K, Bossios, A, Sjostrand, M, Lee, JJ, Lotvall, JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9: pp. 654-9 CrossRef
    27. Hunter, MP, Ismail, N, Zhang, X, Aguda, BD, Lee, EJ, Yu, L (2008) Detection of microRNA expression in human peripheral blood microvesicles. PLoS ONE. 3: pp. e3694 CrossRef
    28. Skog, J, Wurdinger, T, Rijn, S, Meijer, DH, Gainche, L, Sena-Esteves, M (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 10: pp. 1470-6 CrossRef
    29. Noerholm, M, Balaj, L, Limperg, T, Salehi, A, Zhu, LD, Hochberg, FH (2012) RNA expression patterns in serum microvesicles from patients with glioblastoma multiforme and controls. BMC Cancer. 12: pp. 22 CrossRef
    30. Fourcade, O, Simon, MF, Viode, C, Rugani, N, Leballe, F, Ragab, A (1995) Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell. 80: pp. 919-27 CrossRef
    31. Trajkovic, K, Hsu, C, Chiantia, S, Rajendran, L, Wenzel, D, Wieland, F (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319: pp. 1244-7 CrossRef
    32. Chen, X, Liang, H, Zhang, J, Zen, K, Zhang, CY (2012) Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 3: pp. 28-37 CrossRef
    33. Duttagupta, R, Jiang, R, Gollub, J, Getts, RC, Jones, KW (2011) Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS ONE. 6: pp. e20769 CrossRef
    34. Zhang, Y, Liu, D, Chen, X, Li, J, Li, L, Bian, Z (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 39: pp. 133-44 CrossRef
    35. Jaworski, E, Narayanan, A, Duyne, R, Shabbeer-Meyering, S, Iordanskiy, S, Saifuddin, M (2014) Human T-lymphotropic virus type 1-infected cells secrete exosomes that contain Tax protein. J Biol Chem. 289: pp. 22284-305 CrossRef
    36. Al-Nedawi, K, Meehan, B, Micallef, J, Lhotak, V, May, L, Guha, A (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol. 10: pp. 619-24 CrossRef
    37. Okoye, IS, Coomes, SM, Pelly, VS, Czieso, S, Papayannopoulos, V, Tolmachova, T (2014) MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 41: pp. 89-103 CrossRef
    38. Yin, W, Ouyang, S, Li, Y, Xiao, B, Yang, H (2013) Immature dendritic cell-derived exosomes: a promise subcellular vaccine for autoimmunity. Inflammation. 36: pp. 232-40 CrossRef
    39. Klohn, PC, Castro-Seoane, R, Collinge, J (2013) Exosome release from infected dendritic cells: a clue for a fast spread of prions in the periphery?. J Infect. 67: pp. 359-68 CrossRef
    40. Alvarez-Erviti, L, Seow, Y, Yin, H, Betts, C, Lakhal, S, Wood, MJ (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 29: pp. 341-5 CrossRef
    41. Morelli, AE, Larregina, AT, Shufesky, WJ, Sullivan, ML, Stolz, DB, Papworth, GD (2004) Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood. 104: pp. 3257-66 CrossRef
    42. Escrevente, C, Keller, S, Altevogt, P, Costa, J (2011) Interaction and uptake of exosomes by ovarian cancer cells. BMC Cancer. 11: pp. 108 CrossRef
    43. Thery, C, Ostrowski, M, Segura, E (2009) Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9: pp. 581-93 CrossRef
    44. Cocucci, E, Racchetti, G, Meldolesi, J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol. 19: pp. 43-51 CrossRef
    45. Fichtlscherer, S, Rosa, S, Fox, H, Schwietz, T, Fischer, A, Liebetrau, C (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res. 107: pp. 677-84 CrossRef
    46. Cantaluppi, V, Gatti, S, Medica, D, Figliolini, F, Bruno, S, Deregibus, MC (2012) Microvesicles derived from endothelial progenitor cells protect the kidney from ischemia-reperfusion injury by microRNA-dependent reprogramming of resident renal cells. Kidney Int. 82: pp. 412-27 CrossRef
    47. Solingen, C, Boer, HC, Bijkerk, R, Monge, M, Oeveren-Rietdijk, AM, Seghers, L (2011) MicroRNA-126 modulates endothelial SDF-1 expression and mobilization of Sca-1(+)/Lin(鈭? progenitor cells in ischaemia. Cardiovasc Res. 92: pp. 449-55 CrossRef
    48. Ranghino, A, Cantaluppi, V, Grange, C, Vitillo, L, Fop, F, Biancone, L (2012) Endothelial progenitor cell-derived microvesicles improve neovascularization in a murine model of hindlimb ischemia. Int J Immunopathol Pharmacol. 25: pp. 75-85
    49. Lai, RC, Arslan, F, Lee, MM, Sze, NS, Choo, A, Chen, TS (2010) Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res. 4: pp. 214-22 CrossRef
    50. Sun, Q, Chen, X, Yu, J, Zen, K, Zhang, CY, Li, L (2013) Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum. Protein & cell. 4: pp. 197-210 CrossRef
    51. Wang, G, Tam, LS, Li, EK, Kwan, BC, Chow, KM, Luk, CC (2010) Serum and urinary cell-free MiR-146a and MiR-155 in patients with systemic lupus erythematosus. J Rheumatol. 37: pp. 2516-22 CrossRef
    52. Carlsen, AL, Schetter, AJ, Nielsen, CT, Lood, C, Knudsen, S, Voss, A (2013) Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis Rheum. 65: pp. 1324-34 CrossRef
    53. Wang, H, Peng, W, Ouyang, X, Li, W, Dai, Y (2012) Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythematosus. Trans Res. 160: pp. 198-206 CrossRef
    54. Ma, L, Young, J, Prabhala, H, Pan, E, Mestdagh, P, Muth, D (2010) miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12: pp. 247-56
    55. Zhuang, G, Wu, X, Jiang, Z, Kasman, I, Yao, J, Guan, Y (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J. 31: pp. 3513-23 CrossRef
    56. Zhu, S, Wu, H, Wu, F, Nie, D, Sheng, S, Mo, YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res. 18: pp. 350-9 CrossRef
    57. Kosaka, N, Iguchi, H, Ochiya, T (2010) Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 101: pp. 2087-92 CrossRef
    58. Gallach, S, Calabuig-Farinas, S, Jantus-Lewintre, E, Camps, C (2014) MicroRNAs: promising new antiangiogenic targets in cancer. BioMed Res Int. 2014: pp. 878450 CrossRef
    59. Yang, M, Chen, J, Su, F, Yu, B, Su, F, Lin, L (2011) Microvesicles secreted by macrophages shuttle invasion-potentiating microRNAs into breast cancer cells. Mol Cancer. 10: pp. 117 CrossRef
    60. Lima, LG, Chammas, R, Monteiro, RQ, Moreira, ME, Barcinski, MA (2009) Tumor-derived microvesicles modulate the establishment of metastatic melanoma in a phosphatidylserine-dependent manner. Cancer Lett. 283: pp. 168-75 CrossRef
    61. Wysoczynski, M, Ratajczak, MZ (2009) Lung cancer secreted microvesicles: underappreciated modulators of microenvironment in expanding tumors. Int J Cancer. 125: pp. 1595-603 CrossRef
    62. Lehmann, BD, Paine, MS, Brooks, AM, McCubrey, JA, Renegar, RH, Wang, R (2008) Senescence-associated exosome release from human prostate cancer cells. Cancer Res. 68: pp. 7864-71 CrossRef
    63. Hessvik, NP, Phuyal, S, Brech, A, Sandvig, K, Llorente, A (2012) Profiling of microRNAs in exosomes released from PC-3 prostate cancer cells. Biochim Biophys Acta. 1819: pp. 1154-63 CrossRef
    64. Duijvesz, D, Luider, T, Bangma, CH, Jenster, G (2011) Exosomes as biomarker treasure chests for prostate cancer. Eur Urol. 59: pp. 823-31 CrossRef
    65. Bryant, RJ, Pawlowski, T, Catto, JW, Marsden, G, Vessella, RL, Rhees, B (2012) Changes in circulating microRNA levels associated with prostate cancer. Br J Cancer. 106: pp. 768-74 CrossRef
    66. Santiago-Dieppa, DR, Steinberg, J, Gonda, D, Cheung, VJ, Carter, BS, Chen, CC (2014) Extracellular vesicles as a platform for 鈥榣iquid biopsy鈥?in glioblastoma patients. Expert Rev Mol Diagn. 14: pp. 819-25 CrossRef
    67. Alegre, E, Sanmamed, MF, Rodriguez, C, Carranza, O, Martin-Algarra, S, Gonzalez, A (2014) Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Arch Pathol Lab Med. 138: pp. 828-32 CrossRef
    68. Kogure, T, Lin, WL, Yan, IK, Braconi, C, Patel, T (2011) Intercellular nanovesicle-mediated microRNA transfer: a mechanism of environmental modulation of hepatocellular cancer cell growth. Hepatology. 54: pp. 1237-48 CrossRef
    69. Wang, W, Li, H, Zhou, Y, Jie, S (2013) Peripheral blood microvesicles are potential biomarkers for hepatocellular carcinoma. Cancer Biomarkers. 13: pp. 351-7
    70. Baran, J, Baj-Krzyworzeka, M, Weglarczyk, K, Szatanek, R, Zembala, M, Barbasz, J (2010) Circulating tumour-derived microvesicles in plasma of gastric cancer patients. Cancer Immunol, Immunother. 59: pp. 841-50 CrossRef
    71. Taylor, DD, Gercel-Taylor, C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110: pp. 13-21 CrossRef
    72. Giusti, I, D鈥橝scenzo, S, Dolo, V (2013) Microvesicles as potential ovarian cancer biomarkers. BioMed Res Int. 2013: pp. 703048 CrossRef
    73. Corcoran, C, Friel, AM, Duffy, MJ, Crown, J, O鈥橠riscoll, L (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem. 57: pp. 18-32 CrossRef
    74. Rabinowits, G, Gercel-Taylor, C, Day, JM, Taylor, DD, Kloecker, GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 10: pp. 42-6 CrossRef
    75. Rosell, R, Wei, J, Taron, M (2009) Circulating microRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin Lung Cancer. 10: pp. 8-9 CrossRef
    76. Miller, IV, Raposo, G, Welsch, U, Prazeres, CO, Thiel, U, Lebar, M (2013) First identification of Ewing鈥檚 sarcoma-derived extracellular vesicles and exploration of their biological and potential diagnostic implications. Biol Cell. 105: pp. 289-303 CrossRef
    77. Yamada, T, Shigemura, H, Ishiguro, N, Inoshima, Y (2013) Cell Infectivity in relation to bovine leukemia virus gp51 and p24 in bovine milk exosomes. PLoS ONE. 8: pp. e77359 CrossRef
    78. Zhu, X, You, Y, Li, Q, Zeng, C, Fu, F, Guo, A (2014) BCR-ABL1-positive microvesicles transform normal hematopoietic transplants through genomic instability: implications for donor cell leukemia. Leukemia. 28: pp. 1666-75 CrossRef
    79. Zheng, F, Li, J, Du, W, Wang, N, Li, H, Huang, S (2012) Human ether-a-go-go-related gene K+ channels regulate shedding of leukemia cell-derived microvesicles. Leukemia & Lymphoma. 53: pp. 1592-8 CrossRef
    80. Domnikova, NP, Dolgikh, TY, Sholenberg, EV, Vorontsova, EV, Goreva, OB, Mel鈥檔ikova, EV (2013) Blood microvesicles during chronic lymphoproliferative diseases. Bull Exp Biol Med. 156: pp. 94-7 CrossRef
    81. Szczepanski, MJ, Szajnik, M, Welsh, A, Whiteside, TL, Boyiadzis, M (2011) Blast-derived microvesicles in sera from patients with acute myeloid leukemia suppress natural killer cell function via membrane-associated transforming growth factor-beta1. Haematologica. 96: pp. 1302-9 CrossRef
    82. Hedlund, M, Nagaeva, O, Kargl, D, Baranov, V, Mincheva-Nilsson, L (2011) Thermal- and oxidative stress causes enhanced release of NKG2D ligand-bearing immunosuppressive exosomes in leukemia/lymphoma T and B cells. PLoS ONE. 6: pp. e16899 CrossRef
    83. Ratajczak, MZ, Kucia, M, Jadczyk, T, Greco, NJ, Wojakowski, W, Tendera, M (2012) Pivotal role of paracrine effects in stem cell therapies in regenerative medicine: can we translate stem cell-secreted paracrine factors and microvesicles into better therapeutic strategies?. Leukemia. 26: pp. 1166-73 CrossRef
    84. Noto, G, Paolini, L, Zendrini, A, Radeghieri, A, Caimi, L, Ricotta, D (2013) C-src enriched serum microvesicles are generated in malignant plasma cell dyscrasia. PLoS ONE. 8: pp. e70811 CrossRef
    85. Mineo, M, Garfield, SH, Taverna, S, Flugy, A, Leo, G, Alessandro, R (2012) Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis. 15: pp. 33-45 CrossRef
    86. Liu, Y, Zhu, XJ, Zeng, C, Wu, PH, Wang, HX, Chen, ZC (2014) Microvesicles secreted from human multiple myeloma cells promote angiogenesis. Acta Pharmacol Sin. 35: pp. 230-8 CrossRef
    87. Arendt, BK, Walters, DK, Wu, X, Tschumper, RC, Jelinek, DF (2014) Multiple myeloma dell-derived microvesicles are enriched in CD147 expression and enhance tumor cell proliferation. Oncotarget. 5: pp. 5686-99
    88. Sun, L, Wang, HX, Zhu, XJ, Wu, PH, Chen, WQ, Zou, P (2014) Serum deprivation elevates the levels of microvesicles with different size distributions and selectively enriched proteins in human myeloma cells in vitro. Acta Pharmacol Sin. 35: pp. 381-93 CrossRef
    89. Ohshima, K, Inoue, K, Fujiwara, A, Hatakeyama, K, Kanto, K, Watanabe, Y (2010) Let-7 microRNA family is selectively secreted into the extracellular environment via exosomes in a metastatic gastric cancer cell line. PLoS ONE. 5: pp. e13247 CrossRef
    90. Umezu, T, Ohyashiki, K, Kuroda, M, Ohyashiki, JH (2013) Leukemia cell to endothelial cell communication via exosomal miRNAs. Oncogene. 32: pp. 2747-55 CrossRef
    91. Tadokoro, H, Umezu, T, Ohyashiki, K, Hirano, T, Ohyashiki, JH (2013) Exosomes derived from hypoxic leukemia cells enhance tube formation in endothelial cells. J Biol Chem. 288: pp. 34343-51 CrossRef
    92. Roccaro, AM, Sacco, A, Maiso, P, Azab, AK, Tai, YT, Reagan, M (2013) BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression. J Clin Invest. 123: pp. 1542-55 CrossRef
    93. Wang, J, Hendrix, A, Hernot, S, Lemaire, M, Bruyne, E, Valckenborgh, E (2014) Bone marrow stromal cell-derived exosomes as communicators in drug resistance in multiple myeloma cells. Blood. 124: pp. 555-66 CrossRef
    94. Luga, V, Wrana, JL (2013) Tumor-stroma interaction: revealing fibroblast-secreted exosomes as potent regulators of Wnt-planar cell polarity signaling in cancer metastasis. Cancer Res. 73: pp. 6843-7 CrossRef
    95. Zitvogel, L, Regnault, A, Lozier, A, Wolfers, J, Flament, C, Tenza, D (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med. 4: pp. 594-600 CrossRef
    96. Gastpar, R, Gehrmann, M, Bausero, MA, Asea, A, Gross, C, Schroeder, JA (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 65: pp. 5238-47 CrossRef
  • 刊物主题:Oncology; Hematology; Cancer Research;
  • 出版者:BioMed Central
  • ISSN:1756-8722
文摘
Anticancer treatments aiming at killing malignant cells have been applied for decades but have been unsuccessful at curing the disease. The modern concept of tumor microenvironment, especially angiogenesis, suggests that the tumor is not only composed of malignant cells, but also consists of other groups of cells that work together. Recently, genetic message transfer has been revealed between tumor cells and their microenvironment. The latest cell-derived vector, extracellular membrane microvesicles (EMVs), has been found to provide membrane protection and allowed to deliver genetic information beyond the cells. Additionally, EMV-associated microRNAs are involved in a variety of cellular pathways for tumor initiation and progression. Previous published reviews have focused on miRNA that included EMVs as a sensitive marker for tumor monitoring in clinical applications that are based on the alteration of their expression levels in conjunction with disease occurrence and progression. From the aspect of cellular crosstalk, this article will review the role of EMV-mediated microRNA transfer in tumor pathogenesis, including tumor treatment obstacles, history and features, and current research in inflammatory/immune pathologies, as well as in solid tumors and hematological malignancies. This nascent crosstalk model will provide a novel insight into complementing the classic mechanisms of intercellular communication and contribute to the potential therapeutic strategy via small RNA molecule-carrying EMVs for multimodality treatment of cancer.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700