用户名: 密码: 验证码:
Determinantal Martingales and Correlations of Noncolliding Random Walks
详细信息    查看全文
  • 作者:Makoto Katori
  • 关键词:Noncolliding random walk ; Discrete It?’s formula ; Martingales ; Determinantal processes ; Random matrix theory ; Infinite particle systems ; Invariance principle
  • 刊名:Journal of Statistical Physics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:159
  • 期:1
  • 页码:21-42
  • 全文大小:332 KB
  • 参考文献:1. Andrews, GE, Askey, R, Roy, R (1999) Special Functions. Cambridge University Press, Cambridge CrossRef
    2. Baik, J (2000) Random vicious walks and random matrices. Commun. Pure Appl. Math. 53: pp. 1385-1410 CrossRef
    3. Baik, J, Suidan, TM (2007) Random matrix central limit theorems for nonintersecting random walks. Ann. Probab. 35: pp. 1807-1834 CrossRef
    4. Ben Hough, J, Krishnapur, M, Peres, Y, Virág, B (2009) Zeros of Gaussian Analytic Functions and Determinantal Point Processes. American Mathematical Society, Providence CrossRef
    5. Billingsley, P (1968) Convergence of Probability Measures. Wiley, New York
    6. Cardy, J, Katori, M (2003) Families of vicious walkers. J. Phys. A 36: pp. 609-629 CrossRef
    7. Dyson, FJ (1962) A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3: pp. 1191-1198 CrossRef
    8. Eichelsbacher, P, K?nig, W (2008) Ordered random walks. Electron. J. Probab. 13: pp. 1307-1336
    Erdélyi, A eds. (1955) Higher Transcendental Functions. Bateman Manuscript Project. McGraw-Hill, New York
    9. Esaki, S (2014) Noncolliding system of continuous-time random walks. Pac. J. Math. Ind. 6: pp. 1-10 CrossRef
    10. Eynard, B, Mehta, ML (1998) Matrices coupled in a chain: I. Eigenvalue correlations. J. Phys. A 31: pp. 4449-4456 CrossRef
    11. Feierl, T (2012) The height of watermelons with wall. J. Phys. A 45: pp. 095003 CrossRef
    12. Feller, W (1966) An Introduction to Probability Theory and Its Applications. Wiley, New York
    13. Fisher, ME (1984) Walks, walls, wetting, and melting. J. Stat. Phys. 34: pp. 667-729 CrossRef
    14. Forrester, PJ (2010) Log-gases and Random Matrices. London Mathematical Society Monographs. Princeton University Press, Princeton
    15. Fujita, T (2002) Stochastic Calculus for Finance (in Japanese). Kodansha, Tokyo
    16. Fujita, T, Kawanishi, Y (2008) A proof of Ito’s formula using a discrete Ito’s formula. Stud. Sci. Math. Hungry 45: pp. 125-134
    17. Grabiner, DJ (1999) Brownian motion in a Weyl chamber, non-colliding particles, and random matrices. Ann. Inst. Henri Poincaré, Probab. Stat. 35: pp. 177-204 CrossRef
    18. Graczyk, P., Ma?ecki, J.: Multidimensional Yamada–Watanabe theorem and its applications to particle systems. J. Math. Phys. 54, 021503/1-15 (2013)
    19. Harkness, WL, Harkness, ML (1968) Generalized hyperbolic secant distributions. J. Am. Stat. Assoc. 63: pp. 329-337
    20. Johansson, K (2001) Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices. Commun. Math. Phys. 215: pp. 683-705 CrossRef
    21. Johansson, K (2002) Non-intersecting paths, random tilings and random matrices. Probab. Theory Relat. Fields 123: pp. 225-280 CrossRef
    22. Johansson, K (2005) Non-intersecting, simple, symmetric random walks and the extended Hahn kernel. Ann. Inst. Fourier 55: pp. 2129-2145 CrossRef
    23. Katori, M (2014) Determinantal martingales and noncolliding diffusion processes. Stoch. Process. Appl. 124: pp. 3724-3768 CrossRef
    24. Katori, M.: Elliptic determi
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Statistical Physics
    Mathematical and Computational Physics
    Physical Chemistry
    Quantum Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-9613
文摘
We study the noncolliding random walk (RW), which is a particle system of one-dimensional, simple and symmetric RWs starting from distinct even sites and conditioned never to collide with each other. When the number of particles is finite, \(N , this discrete process is constructed as an \(h\) -transform of absorbing RW in the \(N\) -dimensional Weyl chamber. We consider Fujita’s polynomial martingales of RW with time-dependent coefficients and express them by introducing a complex Markov process. It is a complexification of RW, in which independent increments of its imaginary part are in the hyperbolic secant distribution, and it gives a discrete-time conformal martingale. The \(h\) -transform is represented by a determinant of the matrix, whose entries are all polynomial martingales. From this determinantal-martingale representation (DMR) of the process, we prove that the noncolliding RW is determinantal for any initial configuration with \(N , and determine the correlation kernel as a function of initial configuration. We show that noncolliding RWs started at infinite-particle configurations having equidistant spacing are well-defined as determinantal processes and give DMRs for them. Tracing the relaxation phenomena shown by these infinite-particle systems, we obtain a family of equilibrium processes parameterized by particle density, which are determinantal with the discrete analogues of the extended sine-kernel of Dyson’s Brownian motion model with \(\beta =2\) . Following Donsker’s invariance principle, convergence of noncolliding RWs to the Dyson model is also discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700