用户名: 密码: 验证码:
Degradation and dechlorination of pentachlorophenol by microwave-activated persulfate
详细信息    查看全文
  • 作者:Chengdu Qi (1)
    Xitao Liu (1)
    Wei Zhao (2)
    Chunye Lin (1)
    Jun Ma (1)
    Wenxiao Shi (1)
    Qu Sun (1)
    Hao Xiao (3)

    1. State Key Laboratory of Water Environment Simulation
    ; School of Environment ; Beijing Normal University ; Beijing ; 100875 ; China
    2. Institute of Scientific and Technical Information of China
    ; Beijing ; 100038 ; China
    3. College of Chemistry
    ; Beijing Normal University ; Beijing ; 100875 ; China
  • 关键词:Pentachlorophenol ; Persulfate ; Microwave ; Dechlorination ; Toxicity
  • 刊名:Environmental Science and Pollution Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:22
  • 期:6
  • 页码:4670-4679
  • 全文大小:659 KB
  • 参考文献:1. Ahmad, M, Teel, AL, Watts, RJ (2013) Mechanism of persulfate activation by phenols. Environ Sci Technol 47: pp. 5864-5871 CrossRef
    2. Anipsitakis, GP, Dionysiou, DD, Gonzalez, MA (2005) Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds. Implications of chloride ions. Environ Sci Technol 40: pp. 1000-1007 CrossRef
    3. Costa, C, Santos, VHS, Araujo, PHH, Sayer, C, Santos, AF, Fortuny, M (2009) Microwave-assisted rapid decomposition of persulfate. Eur Polym J 45: pp. 2011-2016 CrossRef
    4. Costanza, J, Ota帽o, G, Callaghan, J, Pennell, KD (2010) PCE oxidation by sodium persulfate in the presence of solids. Environ Sci Technol 44: pp. 9445-9450 CrossRef
    5. Crosby, DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53: pp. 1051-1080 CrossRef
    6. Deng, S, Ma, R, Yu, Q, Huang, J, Yu, G (2009) Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent. J Hazard Mater 165: pp. 408-414 CrossRef
    7. DIN (2007) Water quality-determination of the inhibitory effect of water samples on the light emission of / Vibrio fischeri (luminescent bacteria test), part 3: method using freeze-dried bacteria.
    8. Dogliotti, L, Hayon, E (1967) Flash photolysis of persulfate ions in aqueous solutions. The sulfate and ozonide radical anions. J Phys Chem 71: pp. 2511-2516 CrossRef
    9. Furman, OS, Teel, AL, Watts, RJ (2010) Mechanism of base activation of persulfate. Environ Sci Technol 44: pp. 6423-6428 CrossRef
    10. Garg, S, Tripathi, M, Singh, S, Singh, A (2013) Pentachlorophenol dechlorination and simultaneous Cr6+ reduction by Pseudomonas putida SKG-1 MTCC (10510): characterization of PCP dechlorination products, bacterial structure, and functional groups. Environ Sci Pollut Res 20: pp. 2288-2304 CrossRef
    11. Hayward K (1998) Drinking water contaminant hit-list for US EPA. vol 21
    12. House, DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62: pp. 185-203 CrossRef
    13. Huang, K-C, Couttenye, RA, Hoag, GE (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49: pp. 413-420 CrossRef
    14. Jia, H, Gu, C, Li, H, Fan, X, Li, S, Wang, C (2012) Effect of groundwater geochemistry on pentachlorophenol remediation by smectite-templated nanosized Pd0/Fe0. Environ Sci Pollut Res 19: pp. 3498-3505 CrossRef
    15. Kaiser, KLE, Ribo, JM (1988) Photobacterium phosphoreum toxicity bioassay. II. Toxicity data compilation. Toxic Assess 3: pp. 195-237 CrossRef
    16. Kim, Y-H, Carraway, ER (2000) Dechlorination of pentachlorophenol by zero valent iron and modified zero valent irons. Environ Sci Technol 34: pp. 2014-2017 CrossRef
    17. Kolthoff, IM, Miller, IK (1951) The chemistry of persulfate I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J Am Chem Soc 73: pp. 3055-3059 CrossRef
    18. Kuang, J, Huang, J, Wang, B, Cao, Q, Deng, S, Yu, G (2013) Ozonation of trimethoprim in aqueous solution: identification of reaction products and their toxicity. Water Res 47: pp. 2863-2872 CrossRef
    19. Lee, Y-C, Lo, S-L, Chiueh, P-T, Chang, D-G (2009) Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Res 43: pp. 2811-2816 CrossRef
    20. Liang, C, Su, H-W (2009) Identification of sulfate and hydroxyl radicals in thermally activated persulfate. Ind Eng Chem Res 48: pp. 5558-5562 CrossRef
    21. Liang, C, Wang, Z-S, Bruell, CJ (2007) Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66: pp. 106-113 CrossRef
    22. Lipczynska-Kochany, E, Sprah, G, Harms, S (1995) Influence of some groundwater and surface waters constituents on the degradation of 4-chlorophenol by the Fenton reaction. Chemosphere 30: pp. 9-20 CrossRef
    23. Liu, X, Quan, X, Bo, L, Chen, S, Zhao, Y (2004) Simultaneous pentachlorophenol decomposition and granular activated carbon regeneration assisted by microwave irradiation. Carbon 42: pp. 415-422 CrossRef
    24. Maruthamuthu, P, Neta, P (1978) Phosphate radicals. Spectra, acid鈥揵ase equilibriums, and reactions with inorganic compounds. J Phys Chem 82: pp. 710-713 CrossRef
    25. McElroy, WJ, Waygood, SJ (1990) Kinetics of the reactions of the SO4 鈭?radical with SO4 鈭? S2O8 2鈭? H2O and Fe2+. J Chem Soc Faraday Trans 86: pp. 2557-2564 CrossRef
    26. Nie, M, Yang, Y, Zhang, Z, Yan, C, Wang, X, Li, H, Dong, W (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246: pp. 373-382 CrossRef
    27. Niu, J, Bao, Y, Li, Y, Chai, Z (2013) Electrochemical mineralization of pentachlorophenol (PCP) by Ti/SnO2鈥揝b electrodes. Chemosphere 92: pp. 1571-1577 CrossRef
    28. Peyton, GR (1993) The free-radical chemistry of persulfate-based total organic carbon analyzers. Mar Chem 41: pp. 91-103 CrossRef
    29. Pu, X, Cutright, T (2007) Degradation of pentachlorophenol by pure and mixed cultures in two different soils. Environ Sci Pollut Res 14: pp. 244-250 CrossRef
    30. Qi, C, Liu, X, Lin, C, Zhang, X, Ma, J, Tan, H, Ye, W (2014) Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chem Eng J 249: pp. 6-14 CrossRef
    31. Rodgers, JD, Jedral, W, Bunce, NJ (1999) Electrochemical oxidation of chlorinated phenols. Environ Sci Technol 33: pp. 1453-1457 CrossRef
    32. Sung, M, Lee, SZ, Chan, HL (2012) Kinetic modeling of ring byproducts during ozonation of pentachlorophenol in water. Sep Purif Technol 84: pp. 125-131 CrossRef
    33. ThanhThuy, TT, Feng, H, Cai, Q (2013) Photocatalytic degradation of pentachlorophenol on ZnSe/TiO2 supported by photo-Fenton system. Chem Eng J 223: pp. 379-387 CrossRef
    34. Tsitonaki, A, Petri, B, Crimi, M, Mosb脝K, H, Siegrist, RL, Bjerg, PL (2010) In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review. Criti Rev Env Sci Technol 40: pp. 55-91 CrossRef
    35. Vallejo, M, San Rom谩n, MF, Ortiz, I (2013) Quantitative assessment of the formation of polychlorinated derivatives, PCDD/Fs, in the electrochemical oxidation of 2-chlorophenol as function of the electrolyte type. Environ Sci Technol 47: pp. 12400-12408 CrossRef
    36. Vijayalakshmi, SP, Chakraborty, J, Madras, G (2005) Thermal and microwave-assisted oxidative degradation of poly(ethylene oxide). J Appl Polym Sci 96: pp. 2090-2096 CrossRef
    37. Waldemer, RH, Tratnyek, PG, Johnson, RL, Nurmi, JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41: pp. 1010-1015 CrossRef
    38. WHO (2011) Guidelines for drinking-water quality, 4th edition. Malta
    39. Xu, L, Yuan, R, Guo, Y, Xiao, D, Cao, Y, Wang, Z, Liu, J (2013) Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds. Chem Eng J 217: pp. 169-173 CrossRef
    40. Xu, H-b, D-y, Z, Y-j, L, P-y, L, C-x, D (2014) Enhanced degradation of ortho-nitrochlorobenzene by the combined system of zero-valent iron reduction and persulfate oxidation in soils. Environ Sci Pollut Res 21: pp. 5132-5140 CrossRef
    41. Yalfani, MS, Georgi, A, Contreras, S, Medina, F, Kopinke, F-D (2011) Chlorophenol degradation using a one-pot reduction鈥搊xidation process. Appl Catal B Environ 104: pp. 161-168 CrossRef
    42. Yang, S, Wang, P, Yang, X, Wei, G, Zhang, W, Shan, L (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. J Environ Sci 21: pp. 1175-1180 CrossRef
    43. Zhao, J, Zhang, Y, Quan, X, Chen, S (2010) Enhanced oxidation of 4-chlorophenol using sulfate radicals generated from zero-valent iron and peroxydisulfate at ambient temperature. Sep Purif Technol 71: pp. 302-307 CrossRef
    44. Zhao, L, Hou, H, Fujii, A, Hosomi, M, Li, F (2014) Degradation of 1,4-dioxane in water with heat- and Fe2+-activated persulfate oxidation. Environ Sci Pollut Res 21: pp. 7457-7465 CrossRef
    45. Zheng, W, Wang, X, Yu, H, Tao, X, Zhou, Y, Qu, W (2011) Global trends and diversity in pentachlorophenol levels in the environment and in humans: a meta-analysis. Environ Sci Technol 45: pp. 4668-4675 CrossRef
    46. Zimbron, JA, Reardon, KF (2009) Fenton鈥檚 oxidation of pentachlorophenol. Water Res 43: pp. 1831-1840 CrossRef
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Environment
    Environment
    Atmospheric Protection, Air Quality Control and Air Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
    Industrial Pollution Prevention
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1614-7499
文摘
The degradation performance of pentachlorophenol (PCP) by the microwave-activated persulfate (MW/PS) process was investigated in this study. The results indicated that degradation efficiency of PCP in the MW/PS process followed pseudo-first-order kinetics, and compared with conventional heating, microwave heating has a special effect of increasing the reaction rate and reducing the process time. A higher persulfate concentration and reaction temperature accelerated the PCP degradation rate. Meanwhile, increasing the pH value and ionic strength of the phosphate buffer slowed down the degradation rate. The addition of ethanol and tert-butyl alcohol as hydroxyl radical and sulfate radical scavengers proved that the sulfate radicals were the dominant active species in the MW/PS process. Gas chromatography-mass spectrometry (GC-MS) was employed to identify the intermediate products, and then a plausible degradation pathway involving dechlorination, hydrolysis, and mineralization was proposed. The acute toxicity of PCP, as tested with Photobacterium phosphoreum, Vibrio fischeri, and Vibrio qinghaiensis, was negated quickly during the MW/PS process, which was in agreement with the nearly complete mineralization of PCP. These results showed that the MW/PS process could achieve a high mineralization level in a short time, which provided an efficient way for PCP elimination from wastewater.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700