用户名: 密码: 验证码:
Heat transfer in tubing-casing annulus during production process of geothermal systems
详细信息    查看全文
  • 作者:Fuzong Zhou (1)
    Xiuhua Zheng (2)

    1. Department of Economics and Management
    ; Tongren University ; Tongren ; 554300 ; China
    2. School of Engineering and Technology
    ; China University of Geosciences ; Beijing ; 100083 ; China
  • 关键词:heat transfer ; tubing ; casing annulus ; Rayleigh number ; natural convection ; geothermal system ; thermal conductivity ; radiation
  • 刊名:Journal of Earth Science
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:26
  • 期:1
  • 页码:116-123
  • 全文大小:424 KB
  • 参考文献:1. Akpan, A. E., 2014. Estimation of Subsurface Temperatures in the Tattapani Geothermal Field, Central India, from Limited Volume of Magnetotelluric Data and Borehole Thermograms Using a Constructive Back-Propagation Neural Network. / Earth Interactions, 18: 1鈥?6 CrossRef
    2. Deguen, R., 2013. Thermal Convection in a Spherical Shell with Melting/Freezing at either or both of Its Boundaries. / Journal of Earth Science, 24(5): 669鈥?82 CrossRef
    3. Dropkin, D., Somercales, E., 1965. Heat Transfer by Natural Convection in Liquids Confined by Two Parallel Plates Which are Inclined at Various Angles with Respect to Horizontal. / Journal of Heat Transfer, 87: 77 CrossRef
    4. Durucan, E., Olcenoglu, K., 1970. Geothermal Drilling and Preliminary Test Operations at Kizildere, Turkey. / Geothermics, 2: 1463鈥?466 CrossRef
    5. Fishenden, M., Saunders, O. A., 1950. An Introduction to Heat Transfer (1st Ed.). Oxford University Press, London. 103
    6. Gabolde, G., Nguyen, J. P., 1991. Drilling Data Handbook. Technip, Paris
    7. Gallup, D. L., 2009. Production Engineering in Geothermal Technology: A Review. / Geothermics, 38: 326鈥?34 CrossRef
    8. Gorman, J. M., Abraham, J. P., Sparrow, E. M., 2014. A Novel, Comprehensive Numerical Simulation for Predicting Temperatures within Boreholes and the Adjoining Rock Bed. / Geothermics, 50: 213鈥?19 CrossRef
    9. Grant, M. A., Bixley, P. F., 2011. Geothermal Reservoir Engineering (2nd Ed.). Elservier, Oxford
    10. Hasan, A. R., Kabir, C. S., 2002. Fluid Flow and Heat Transfer in Wellbores. Society of Petroleum Engineers, Texas. 64鈥?3
    11. Holman, J. P., 1981. Heat Transfer (5th Ed.). McGraw-Hill, New York
    12. Incropera, F. P., DeWitt, D. P., Bergman, T. L., et al., 2001. Fundamentals of Heat and Mass Transfer (5th Ed.). John Wiley & Sons, Hoboken
    13. Kanev, K., Ikeuchi, J., Kimura, S., et al., 1997. Heat Loss to the Surrounding Rock Formation from a Geothermal Wellbore. / Geothermics, 26: 329鈥?49 CrossRef
    14. Kays, W. M., Leung, E. Y., 1963. Heat Transfer in Annular Passages-Hydrodynamically Developed Turbulent Flow with Arbitrarily Prescribed Heat Flux. / International Journal of Heat and Mass Transfer, 6: 537鈥?57 CrossRef
    15. Miyauchi, A., Kameyama, M., Ichikawa, H., 2014. Linear Stability Analysis on the Influences of the Spatial Variations in Thermal Conductivity and Expansivity on the Flow Patterns of Thermal Convection with Strongly Temperature-Dependent Viscosity. / Journal of Earth Science, 25(1): 126鈥?39 CrossRef
    16. Ramey, H. J., 1962. Wellbore Heat Transmission. / Journal of Petroleum Technology, 14: 427鈥?35 CrossRef
    17. Rohsenow, W. M., Hartnett, J. P., Cho, Y. I., 1998. Handbook of Heat Transfer (3rd Ed.). McGraw-Hill, New York
    18. Schulz, S. U., 2008. Investigations on the Improvement of the Energy Output of a Closed Loop Geothermal System (CLGS): [Dissertation]. Technische Universit盲t Berlin, Berlin
    19. Sheriff, N., 1966. Experimental Investigation of Natural Convection in Single and Multiple Vertical Annuli with High Pressure Carbon Dioxide. Proceedings of the Third International Heat Transfer Conference, Chicago, Illinois. 2: 132
    20. Tang, H. X., Zhang, J. B., Wang, T. Q., et al., 2010. Prediction for Temperature Distribution in Offshore High-Temperature Oilwells. / Journal of Daqing Petroleum Institute, 34(3): 96鈥?00 (in Chinese with English Abstract)
    21. Tekin, S., Akin, S., 2011. Estimation of the Formation Temperature from the Inlet and Outlet Mud Temperatures while Drilling Geothermal Formations. Proceedings of 36th Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    22. T贸th, A., 2006. Heat Losses in a Planned Hungarian Geothermal Power Plant. Proceedings, Thirsty-First Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    23. T贸th, A., Bobok, E., 2008. Limits of Heat Transfer Extraction from Dry Hole. Proceedings, Thirty-Third Workshop on Geothermal Reservoir Engineering. Stanford University, Stanford
    24. Willhite, G. P., 1967. Overall Heat Transfer Coefficients in Steam and Hot Water Injection Wells. / Journal of Petroleum Technology, 19: 607鈥?15 CrossRef
    25. Willhite, G. P., Wilson, J. H., Martin, W. L., 1967. Use of an Insulating Fluid for Casing Protection during Steam Injection. / Journal of Petroleum Technology, 19: 1453鈥?456 CrossRef
    26. Wu, B., Zhang, X., Jeffrey, R. G., 2014. A Model for Downhole Fluid and Rock Temperature Prediction during Circulation. / Geothermics, 50: 202鈥?12 CrossRef
    27. Yang, S. M., Tao, W. Q., 1998. Heat Transfer (3rd Ed.). Higher Education Press, Beijing (in Chinese)
    28. Yang, X. W., Fan, H. H., Zhao, L. X., 2008. A New Way to Predict Borehole Flowing Temperature Distribution. / Petroleum Geology & Oilfield Development in Daqing, 27(4): 76鈥?1 (in Chinese with English Abstract)
    29. Zhou, F., Zhang, X., 2013. Assessment of Heat Transfer in an Aquifer Utilizing Fractal Theory. / Applied Thermal Engineering, 59(1鈥?): 445鈥?53 CrossRef
  • 刊物主题:Earth Sciences, general; Geotechnical Engineering & Applied Earth Sciences; Biogeosciences; Geochemistry; Geology;
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1867-111X
文摘
In geothermal systems, the temperature distribution of heat flow in the wellbore is dependent on the well structure and the geological conditions of the surrounding formation. Understanding of heat transfer in the tubing-casing annulus can reduce the heat losses of wellbore fluid during the production process. The present study discusses the possible means of heat transfer in the annulus, and develops a piecewise equation for estimating the convective heat transfer coefficient with a wider valid condition of 08. By converting the radiation and natural convection into equivalent thermal conduction, their sum is defined as a total thermal conductivity to describe the heat transfer in the annulus. The results indicate that the annulus filled with gas can be utilized as a good thermal barrier for the fluid in the wellbore. Additionally, the contribution of radiation will increase to occupy a majority proportion in the total thermal conductivity when the annular size increases and the materials have high emissivity. Otherwise, thermal radiation is just the second factor.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700