用户名: 密码: 验证码:
Highly active porous nickel-film electrode via polystyrene microsphere template-assisted composite electrodeposition for hydrogen-evolution reaction in alkaline medium
详细信息    查看全文
  • 作者:Yinliang Cao (1)
    Haijing Liu (1)
    Xin Bo (1)
    Feng Wang (1)

    1. State Key Laboratory of Chemical Resource Engineering
    ; Beijing Key Laboratory of Electrochemical Process and Technology for Materials ; Beijing University of Chemical Technology ; Beijing ; 100029 ; China
  • 关键词:porous film electrode ; nickel ; electrodeposition ; electrocatalytic activity ; hydrogen evolution reaction
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:58
  • 期:3
  • 页码:501-507
  • 全文大小:2,002 KB
  • 参考文献:1. Steinfeld A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions. / Int J Hydrogen Energy, 2002, 27: 611鈥?19 CrossRef
    2. Bockris JOM, Veziroglu TN. Estimates of the price of hydrogen as a medium for wind and solar sources. / Int J Hydrogen Energy, 2007, 32: 1605鈥?610 CrossRef
    3. Ma C, Sheng J, Brandon N, Zhang C, Li G. Preparation of tungsten carbide-supported nano platinum catalyst and its electrocatalytic activity for hydrogen evolution. / Int J Hydrogen Energy, 2007, 32: 2824鈥?829 CrossRef
    4. Solmaz R, Kardas G. Electrochemical deposition and characterization of NiFe coatings as electrocatalytic materials for alkaline water electrolysis. / Electrochim Acta, 2009, 54: 3726鈥?734 CrossRef
    5. Turner JA. Sustainable hydrogen production. / Science, 2004, 305: 972鈥?74 CrossRef
    6. Kotay SM, Das D. Biohydrogen as a renewable energy resource-Prospects and potentials. / Int J Hydrogen Energy, 2008, 33: 258鈥?63 CrossRef
    7. Zeng K, Zhang D. Recent progress in alkaline water electrolysis for hydrogen production and applications. / Prog Energ Combust, 2010, 36: 307鈥?26 CrossRef
    8. Ketpang K, Kim MS, Kim SH, Shanmugam S. High performance catalyst for electrochemical hydrogen evolution reaction based on SiO2/WO3鈭?em class="a-plus-plus">x nanofacets. / Int J Hydrogen Energy, 2013, 38: 9732鈥?740 CrossRef
    9. Sheng WC, Gasteiger HA, Horn YS. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes. / J Electrochem Soc, 2010, 157: B1529鈥揃1536 CrossRef
    10. Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. / J Am Chem Soc, 2011, 133: 7296鈥?299 CrossRef
    11. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK. Alloys of platinum and early transition metals as oxygen reduction electro-catalysts. / Nat Chem, 2009, 1: 552鈥?56 CrossRef
    12. Paunovic P, Popovski O, Fidancevska E, Ranguelov B, Gogovska DS, Dimitrov AT, Jordanov SH. Co-magneli phases electrocatalysts for hydrogen/oxygen evolution. / Int J Hydrogen Energy, 2010, 35: 10073鈥?0080 CrossRef
    13. Kreysa G, Hakansson B. Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution. / J Electroanal Chem Interf Electrochem, 1986, 201: 61鈥?3 CrossRef
    14. Wei ZD, Yan AZ, Feng YC, Li L, Sun CX, Shao ZG, Shen PK. Study of hydrogen evolution reaction on Ni-P amorphous alloy in the light of experimental and quantum chemistry. / Electrochem Commun, 2007, 9: 2709鈥?715 CrossRef
    15. Lu PWT, Srinivasan S. Advances in water electrolysis technology with emphasis on use of the solid polymer electrolyte. / J Appl Electrochem, 1979, 9: 269鈥?83 CrossRef
    16. Xie ZW, He P, Du LC, Dong FQ, Dai K, Zhang TH. Comparison of four nickel-based electrodes for hydrogen evolution reaction. / Electrochim Acta, 2013, 88: 390鈥?94 CrossRef
    17. Gennero de Chialvo MR, Chialvo AC. Hydrogen evolution reaction on a smooth iron electrode in alkaline solution at different temperatures. / Phys Chem Chem Phys, 2001, 3: 3180鈥?184 CrossRef
    18. Fan W, Lai Q, Zhang Q, Wang Y. Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. / J Phys Chem C, 2011, 115: 10694鈥?0701 CrossRef
    19. Blouin M, Guay D. Activation of ruthenium oxide, iridium oxide, and mixed RuxIr1鈭?em class="a-plus-plus">x oxide electrodes during cathodic polarization and hydrogen evolution. / J Electrochem Soc, 1997, 144: 573鈥?81 CrossRef
    20. Lacnjevac UC, Jovic BM, Jovic VD, Krstajic NV. Determination of kinetic parameters for the hydrogen evolution reaction on the electrodeposited Ni-MoO2 composite coating in alkaline solution. / J Electroanal Chem, 2012, 677鈥?80: 31鈥?0 CrossRef
    21. Jayalakshmi M, Puspitasari I, Jung K, Joo O. Effect of different substrates on the electrochemical behavior of Ni-Mo-Fe-Co-S composite film in alkali solutions. / Int J Electrochem Sci, 2008, 3: 787鈥?96
    22. Farzaneh MA, Zamanzad-Ghavidel MR, Raeissi K, Golozar MA, Saatchi A, Kabi S. Effects of Co and W alloying elements on the electrodeposition aspects and properties of nanocrystalline Ni alloy coatings. / Appl Surf Sci, 2011, 257: 5919鈥?926 CrossRef
    23. Shervedani RK, Madram AR. Kinetics of hydrogen evolution reaction on nanocrystalline electrodeposited Ni62Fe35C3 cathode in alkaline solution by electrochemical impedance spectroscopy. / Electrochim Acta, 2007, 53: 426鈥?33 CrossRef
    24. Paseka I. Hydrogen evolution reaction on Ni-P alloys: the internal stress and the activities of electrodes. / Electrochim Acta, 2008, 53: 4537鈥?543 CrossRef
    25. Herraiz-Cardona I, Ortega E, Anton JG, Perez-Herranz V. Assessment of the roughness factor effect and the intrinsic catalytic activity for hydrogen evolution reaction on Ni-based electrodeposits. / Int J Hydrogen Energy, 2011, 36: 9428鈥?438 CrossRef
    26. Birry L, Lasia A. Studies of the hydrogen evolution reaction on raney Nickel-Molybdenum electrodes. / J Appl Electrochem, 2004, 34: 735鈥?49 CrossRef
    27. Dong HX, Lei T, He YH, Xu NP, Huang BY, Liu CT. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. / Int J Hydrogen Energy, 2011, 36: 12112鈥?2120 CrossRef
    28. Mart谋铆nez WM, Fern谩ndez AM, Cano U, Sandoval A. Synthesis of nickel-based skeletal catalyst for an alkaline electrolyzer. / Int J Hydrogen Energy, 2010, 35: 8457鈥?462 CrossRef
    29. Hitz C, Lasia A. Experimental study and modeling of impedance of the her on porous Ni electrodes. / J Electroanal Chem, 2001, 500: 213鈥?22 CrossRef
    30. Jaron A, Zurek Z. New porous Fe64/Ni36 and Ni70/Cu30 electrodes for hydrogen evolution鈥擯roduction and properties. / Solid State Ion, 2010, 181: 976鈥?81 CrossRef
    31. Herraiz-Cardona I, Ortega E, V谩zquez-G貌mez L, P茅rez-Herranz V. Double-template fabrication of three-dimensional porous nickel electrodes for hydrogen evolution reaction. / Int J Hydrogen Energy, 2012, 37: 2147鈥?156 CrossRef
    32. Huang YJ, Lai CH, Wu PW, Chen LY. Ni inverse opals for water electrolysis in an alkaline electrolyte. / J Electrochem Soc, 2010, 157: 18鈥?2 CrossRef
    33. Marozzi CA, Chialvo AC. Development of electrode morphologies of interest in electrocatalysis. Part 1: electrodeposited porous nickel electrodes. / Electrochim Acta, 2000, 45: 2111鈥?120 CrossRef
    34. Zein El Abedin S, Prowald A, Endres F. Fabrication of highly ordered macroporous copper films using template-assisted electrodeposition in an ionic liquid. / Electrochem Commun, 2012, 18: 70鈥?3 CrossRef
    35. Hazen KC, Hazen BW. A polystyrene microsphere assay for detecting surface hydrophobicity variations within Candida albicans populations. / J Microbiol Meth, 1987, 6: 289鈥?99 CrossRef
    36. Shouldice GTD, Vandezande GA, Rudin A. Practical aspects of the emulsifier-free emulsion polymerization of styrene. / Eur Ploym J, 1994, 30: 179鈥?83 CrossRef
    37. EI-Sherik AM, Erb U. Synthesis of bulk nanocrystalline nickel by pulsed electrodeposition. / J Mater Sci, 1995, 30: 5743鈥?749 CrossRef
    38. Liu H, Wang F, Zhao Y, Liu J, Park KC, Endo M. Synthesis of iron-palladium binary alloy nanotubes by template-assisted electrodeposition from metal-complex solution. / J Electroanal Chem, 2009, 633: 15鈥?8 CrossRef
    39. Qin XX, Liu JJ, Wang F, Ji J. Effect of multi-walled carbon nanotubes as second phase on the copper electrochemical reduction behavior for fabricating their nanostructured composite films. / J Electroanal Chem, 2011, 651: 233鈥?36 CrossRef
    40. Kellenberger A, Vaszilcsin N, Brandl W, Duteanu N. Kinetics of hydrogen evolution reaction on skeleton nickel and nickel-titanium electrodes obtained by thermal arc spraying technique. / Int J Hydrogen Energy, 2007, 32: 3258鈥?265 CrossRef
    41. Chen L, Lasia A. Study of the kinetics of hydrogen evolution reaction on nickel-zinc alloy electrodes. / J Electrochem Soc, 1991, 138: 3321鈥?328 CrossRef
    42. Diard JP, Gorrec C, Montella C. Linear diffusion impedance. General expression and applications. / J Electrochem Chem, 1999, 471: 126鈥?31 CrossRef
    43. Ciureanu M, Roberge R. Electrochemical impedance study of PEM fuel cells. Experimental diagnostics and modeling of air cathodes. / J Phys Chem B, 2001, 105: 3531鈥?539 CrossRef
    44. Cha QX. / Introduction to Electrode Kinetics. 4th Ed. Beijing: Science Press, 2002
    45. Tasic GS, Maslovara SP, Zugic DL, Maksic AD, Kaninski MPM. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. / Int J Hydrogen Energy, 2011, 36: 11588鈥?1595 CrossRef
    46. Kaninski MPM, Nikolic VM, Potkonjak TN, Simonovic BR, Potkonjak NI. Catalytic activity of Pt-based intermetallics for the hydrogen production-Influence of ionic activator. / Appl Catal A, 2007, 321: 93鈥?9 CrossRef
    47. Giz MJ, Machado SAS, Avaca LA, Gonzalez ER. High area Ni-Zn and Ni-Co-Zn codeposits as hydrogen electrodes in alkaline solutions. / J Appl Electrochem, 1992, 22: 973鈥?77 CrossRef
    48. Simpraga RP, Conway BE. The real-area scaling factor in electrocatalysis and in charge storage by supercapacitors. / Electrochim Acta, 1998, 43: 3045鈥?058 CrossRef
    49. Giz MJ, Bento SC, Gonzale ER. NiFeZn codeposit as a cathode material for the production of hydrogen by water electrolysis. / Int J Hydrogen Energy, 2000, 25: 621鈥?26 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Chinese Library of Science
    Chemistry
  • 出版者:Science China Press, co-published with Springer
  • ISSN:1869-1870
文摘
A highly porous nickel-film electrode with satisfactory mechanical strength was prepared by a facile vertical template-assisted composite electrodeposition method using polystyrene (PS) microspheres templates, with the aim of improving the electrocatalytic activity for the hydrogen-evolution reaction (HER). During the composite electrodeposition process, the hydrophobic PS microspheres were highly dispersed in the electrolyte with the help of a surfactant, and then co-deposited with Ni to form the film electrode. After removing the PS templates by annealing, a porous Ni film containing large amount of uniformly dispersed pores with narrow size distribution was obtained, and then applied as the electrode for the HER in an alkaline medium. As evidenced by the electrochemical analysis, the porous Ni film electrode exhibits higher catalytic activity as compared to a dense Ni film electrode and is superior to a Ni/RuO2/CeO2 commercial electrode. The effect of temperature on the catalytic properties of the porous Ni film electrode was also investigated; the activation energy was calculated as 17.26 kJ/mol. The enhanced activity toward the HER was attributed to the improved electrochemical surface area and mass transportation facilitated by the high porosity of the synthesized Ni film electrode.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700