用户名: 密码: 验证码:
MoS2-wrapped silicon nanowires for photoelectrochemical water reduction
详细信息    查看全文
  • 作者:Liming Zhang (1)
    Chong Liu (1)
    Andrew Barnabas Wong (1) (4)
    Joaquin Resasco (2)
    Peidong Yang (1) (3) (4)

    1. Department of Chemistry
    ; University of California ; Berkeley ; CA ; 94720 ; USA
    4. Materials Sciences Division
    ; Lawrence Berkeley National Laboratory ; Berkeley ; CA ; 94720 ; USA
    2. Department of Chemical Engineering
    ; University of California ; Berkeley ; CA ; 94720 ; USA
    3. Department of Materials Science and Engineering
    ; University of California ; Berkeley ; CA ; 94720 ; USA
  • 关键词:MoS2 ; Si nanowire array ; coaxial heterostructure ; photoelectrochemistry ; hydrogen evolution reaction (HER)
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:281-287
  • 全文大小:1,557 KB
  • 参考文献:1. Turner, J. A. Sustainable hydrogen production. / Science 2004, / 305, 972鈥?74. CrossRef
    2. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. / Chem. Rev. 2010, / 110, 6446鈥?473. CrossRef
    3. Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. / Proc. Natl. Acad. Sci. U.S.A. 2006, / 103, 15729鈥?5735. CrossRef
    4. Boettcher, S. W.; Warren, E. L.; Putnam, M. C.; Santori, E. A.; Turner-Evans, D.; Kelzenberg, M. D.; Walter, M. G.; McKone, J. R.; Brunschwig, B. S.; Atwater, H. A.; et al. Photoelectrochemical hydrogen evolution using Si microwire arrays. / J. Am. Chem. Soc. 2011, / 133, 1216鈥?219. CrossRef
    5. Dasgupta, N. P.; Liu, C.; Andrews, S.; Prinz, F. B.; Yang, P. Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. / J. Am. Chem. Soc. 2013, / 135, 12932鈥?2935. CrossRef
    6. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. / Science 2011, / 334, 645鈥?48. CrossRef
    7. McKone, J. R.; Warren, E. L.; Bierman, M. J.; Boettcher, S. W.; Brunschwig, B. S.; Lewis, N. S.; Gray, H. B. Evaluation of Pt, Ni, and Ni-Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. / Energy Environ. Sci. 2011, / 4, 3573鈥?583. CrossRef
    8. Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y. M.; Adzic, R. R. Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. / Angew. Chem. Inter. Ed. 2012, / 51, 6131鈥?135. CrossRef
    9. Vrubel, H.; Hu, X. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. / Angew. Chem. Inter. Ed. 2012, / 124, 12875鈥?2878. CrossRef
    10. Chen, W. F.; Wang, C.-H.; Sasaki, K.; Marinkovic, N.; Xu, W.; Muckerman, J. T.; Zhu, Y.; Adzic, R. R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production. / Energy Environ. Sci. 2013, / 6, 943鈥?51. CrossRef
    11. Jaramillo, T. F.; Jorgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. / Science 2007, / 317, 100鈥?02. CrossRef
    12. Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. / Nat. Mater. 2012, / 11, 963鈥?69. CrossRef
    13. Merki, D.; Hu, X. L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. / Energy Environ. Sci. 2011, / 4, 3878鈥?888. CrossRef
    14. Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. / Nat. Mater. 2013, / 12, 850鈥?55. CrossRef
    15. Sun, Y. J.; Liu, C.; Grauer, D. C.; Yano, J. K.; Long, J. R.; Yang, P. D.; Chang, C. J. Electrodeposited cobalt-sulfide catalyst for electrochemical and photoelectrochemical hydrogen generation from water. / J. Am. Chem. Soc. 2013, / 135, 17699鈥?7702. CrossRef
    16. Kong, D. S.; Cha, J. J.; Wang, H. T.; Lee, H. R.; Cui, Y. First-row transition metal dichalcogenide catalysts for hydrogen evolution reaction. / Energy Environ. Sci. 2013, / 6, 3553鈥?558. CrossRef
    17. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. / J. Am. Chem. Soc. 2013, / 135, 9267鈥?270. CrossRef
    18. Yu, Y. F.; Huang, S. Y.; Li, Y. P.; Steinmann, S. N.; Yang, W. T.; Cao, L. Y. Layer-dependent electrocatalysis of MoS2 for hydrogen evolution. / Nano Lett. 2014, / 14, 553鈥?58. CrossRef
    19. Karunadasa, H. I.; Montalvo, E.; Sun, Y. J.; Majda, M.; Long, J. R.; Chang, C. J. A molecular MoS2 edge site mimic for catalytic hydrogen generation. / Science 2012, / 335, 698鈥?02. CrossRef
    20. Hou, Y. D.; Abrams, B. L.; Vesborg, P. C. K.; Bjorketun, M. E.; Herbst, K.; Bech, L.; Setti, A. M.; Damsgaard, C. D.; Pedersen, T.; Hansen, O.; et al. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution. / Nat. Mater. 2011, / 10, 434鈥?38. CrossRef
    21. Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H.; Horch, S.; Chorkendorff, I.; Norskov, J. K. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. / J. Am. Chem. Soc. 2005, / 127, 5308鈥?309. CrossRef
    22. Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. / Nat. Chem. 2009, / 1, 37鈥?6. CrossRef
    23. Zhou, H.; Yu, F.; Liu, Y.; Zou, X.; Cong, C.; Qiu, C.; Yu, T.; Yan, Z.; Shen, X.; Sun, L. Thickness-dependent patterning of MoS2 sheets with well-oriented triangular pits by heating in air. / Nano Res. 2013, / 6, 703鈥?11. CrossRef
    24. Huang, Y.; Wu, J.; Xu, X.; Ho, Y.; Ni, G.; Zou, Q.; Koon, G.; Zhao, W.; Neto, A.; Eda, G. An innovative way of etching MoS2: Characterization and mechanistic investigation. / Nano Res. 2013, / 6, 200鈥?07. CrossRef
    25. Liu, C.; Dasgupta, N. P.; Yang, P. D. Semiconductor nanowires for artificial photosynthesis. / Chem. Mater. 2014, / 26, 415鈥?22. CrossRef
    26. Yang, P. D.; Yan, R. X.; Fardy, M. Semiconductor nanowire: What鈥檚 next? / Nano Lett. 2010, / 10, 1529鈥?536. CrossRef
    27. Boettcher, S. W.; Spurgeon, J. M.; Putnam, M. C.; Warren, E. L.; Turner-Evans, D. B.; Kelzenberg, M. D.; Maiolo, J. R.; Atwater, H. A.; Lewis, N. S. Energy-conversion properties of vapor-liquid-solid-grown silicon wire-array photocathodes. / Science 2010, / 327, 185鈥?87. CrossRef
    28. Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C.; Hansen, O.; Chorkendorff, I. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. / J. Am. Chem. Soc. 2013, / 135, 1057鈥?064. CrossRef
    29. Brito, J. L.; Ilija, M.; Hern谩ndez, P. Thermal and reductive decomposition of ammonium thiomolybdates. / Thermochim. Acta 1995, / 256, 325鈥?38. CrossRef
    30. Liu, K. K.; Zhang, W. J; Lee, Y. H.; Lin, Y. C.; Chang, M. T.; Su, C. Y.; Chang, C. S.; Li, H.; Shi, Y. M.; Zhang, H.; et al. Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. / Nano Lett. 2012, / 12, 1538鈥?544. CrossRef
    31. Tributsch, H.; Bennett, J. C. Electrochemistry and photochemistry of MoS2 layer crystals. / J. Electroanal. Chem. 1977, / 81, 97鈥?11. CrossRef
    32. Gomez, A.; van der Zant, H.; Steele, G. Folded MoS2 layers with reduced interlayer coupling. / Nano Res. 2014, / 7, 1鈥?. CrossRef
    33. Seger, B.; Laursen, A. B.; Vesborg, P. C. K.; Pedersen, T.; Hansen, O.; Dahl, S.; Chorkendorff, I. Hydrogen production using a molybdenum sulfide catalyst on a titanium-protected n+p-silicon photocathode. / Angew Chem. Int. Ed. 2012, / 5, 9128鈥?131. CrossRef
    34. Kong, D. S.; Wang, H. T.; Cha, J. J.; Pasta, M.; Koski, K. J.; Yao, J.; Cui, Y. Synthesis of MoS2 and MoSe2 films with vertically aligned layers. / Nano Lett. 2013, / 13, 1341鈥?347. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Integration of molybdenum disulfide (MoS2) onto high surface area photocathodes is highly desired to minimize the overpotential for the solar-powered hydrogen evolution reaction (HER). Semiconductor nanowires (NWs) are beneficial for use in photoelectrochemistry because of their large electrochemically available surface area and inherent ability to decouple light absorption and the transport of minority carriers. Here, silicon (Si) NW arrays were employed as a model photocathode system for MoS2 wrapping, and their solar-driven HER activity was evaluated. The photocathode is made up of a well-defined MoS2/TiO2/Si coaxial NW heterostructure, which yielded photocurrent density up to 15 mA/cm2 (at 0 V vs. the reversible hydrogen electrode (RHE)) with good stability under the operating conditions employed. This work reveals that earth-abundant electrocatalysts coupled with high surface area NW electrodes can provide performance comparable to noble metal catalysts for photocathodic hydrogen evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700